Wait a second...
stdClass Object
(
    [nazev] => Department of Water Technology and Environmental Engineering
    [adresa_url] => 
    [api_hash] => 
    [seo_desc] => 
    [jazyk] => 
    [jednojazycny] => 
    [barva] => 
    [indexace] => 1
    [obrazek] => 
    [ga_force] => 
    [cookie_force] => 
    [secureredirect] => 
    [google_verification] => 
    [ga_account] => 
    [ga_domain] => 
    [ga4_account] => G-VKDBFLKL51
    [gtm_id] => 
    [gt_code] => 
    [kontrola_pred] => 
    [omezeni] => 0
    [pozadi1] => 0003~~C8_ILEkFAA.png
    [pozadi2] => 
    [pozadi3] => 
    [pozadi4] => 
    [pozadi5] => 
    [robots] => 
    [htmlheaders] => 
    [newurl_domain] => 'tvp.vscht.cz'
    [newurl_jazyk] => 'en'
    [newurl_akce] => '[en]'
    [newurl_iduzel] => 
    [newurl_path] => 8548/4168/4169
    [newurl_path_link] => Odkaz na newurlCMS
    [iduzel] => 4169
    [platne_od] => 31.10.2023 17:07:00
    [zmeneno_cas] => 31.10.2023 17:07:41.120385
    [zmeneno_uzivatel_jmeno] => Jan Kříž
    [canonical_url] => 
    [idvazba] => 4652
    [cms_time] => 1713594526
    [skupina_www] => Array
        (
        )

    [slovnik] => stdClass Object
        (
            [logo_href] => / 
            [logo] => 
            [google_search] => 001523547858480163194:fu_bhgn2a5e
            [social_fb_odkaz] => https://www.facebook.com/utvpvscht/
            [social_tw_odkaz] =>  https://twitter.com/uctwater
            [social_yt_odkaz] => https://www.youtube.com/user/VSCHTPraha
            [intranet_odkaz] => http://intranet.vscht.cz/
            [intranet_text] => Intranet
            [paticka_budova_a_nadpis] => BUILDING A
            [paticka_budova_a_popis] => Rector, 
Department of Communications, 
Department of Education, 
FCT Dean’s Office, 
Centre for Information Services
            [paticka_budova_b_nadpis] => BUILDING B
            [paticka_budova_b_popis] => Department of R&D, Dean’s Offices:
FET, 
FFBT, 
FCE, 
Computer Centre, 
Department of International Relations, 
Bursar
            [paticka_budova_c_nadpis] => BUILDING C
            [paticka_budova_c_popis] => Crèche Zkumavka, 
General Practitioner, 
Department of Economics and Management, 
Department of Mathematics
            [paticka_budova_1_nadpis] => NATIONAL LIBRARY OF TECHNOLOGY
            [paticka_budova_1_popis] =>  
            [paticka_budova_2_nadpis] => CAFÉ CARBON
            [paticka_budova_2_popis] =>  
            [paticka_adresa] => UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2017
Information provided by the Department of International Relations and the Department of R&D. Technical support by the Computing Centre. [paticka_odkaz_mail] => mailto:Jan.Bartacek@vscht.cz [social_fb_title] => Facebook [social_tw_title] => Department Twitter [social_yt_title] => Youtube [aktualizovano] => Updated [autor] => Author [den_kratky_4] => Thurs [novinky_kategorie_1] => UCT Events [novinky_kategorie_2] => Important Dates [novinky_kategorie_3] => Students Events [novinky_kategorie_4] => Fun [novinky_kategorie_5] => Science [novinky_archiv_url] => /news [novinky_servis_archiv_rok] => Annual Archive [novinky_servis_nadpis] => News Settings [novinky_dalsi] => More News [drobecky] => You are here: UCT PragueFETÚTVP [novinky_archiv] => Annual Archive [archiv_novinek] => Annual Archive [stahnout] => download [logo_mobile_href] => / [logo_mobile] => [mobile_over_nadpis_menu] => Menu [mobile_over_nadpis_search] => Search [mobile_over_nadpis_jazyky] => Languages [mobile_over_nadpis_login] => Login [menu_home] => Homepage [zobraz_desktop_verzi] => switch to desktop version [zobraz_mobilni_verzi] => switch to mobile version [den_kratky_0] => Sun [den_kratky_1] => Mon [paticka_mapa_odkaz] => [nepodporovany_prohlizec] => For full access, please use different browser. [preloader] => Wait a second... [den_kratky_3] => Wed [den_kratky_6] => [hledani_nadpis] => hledání [hledani_nenalezeno] => Nenalezeno... [hledani_vyhledat_google] => vyhledat pomocí Google [den_kratky_5] => [more_info] => [social_in_odkaz] => [den_kratky_2] => [novinka_publikovano] => Publikovano: [novinka_datum_konani] => Datum konani: [novinky_servis_kategorie_vse] => vše [novinky_servis_archiv_submit] => Filtrovat [social_li_odkaz] => ) [poduzel] => stdClass Object ( [4171] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [4172] => stdClass Object ( [nazev] => Department of Water Technology and Environmental Engineering [seo_title] => Department of Water Technology and Environmental Engineering [seo_desc] => [autor] => [autor_email] => [obsah] => [iduzel] => 4172 [canonical_url] => //tvp.vscht.cz/home [skupina_www] => Array ( ) [url] => /home [sablona] => stdClass Object ( [class] => stranka_novinky [html] => [css] => [js] => [autonomni] => 1 ) ) [18927] => stdClass Object ( [nazev] => Department of Water Technology and Environmental Engineering [seo_title] => About DWTEE [seo_desc] => University of Chemistry and Technology UCT Prague, Department of Water Technology and Environmental Engineering [autor] => [autor_email] => [obsah] =>

The Department of Water Technology and Environmental Engineering (DWTEE) is a part of the Faculty of Environmental Technology of the University of Chemistry and Technology, Prague. The Department provides education in Czech and English and is active in the research field related to water technology.  Currently, there are approximately 40 master students, 30 PhD. students and 24 staff members at the department. Many of the research projects run at the department are done in cooperation with companies and other research institutions. The department is involved in two International Erasmus Mundus study programmes: The International Master of Science in Environmental Technology and Engineering (IMETE) and the PhD. program Enviromental technologies for contaminated solids, soils and sediments (ETeCoS3).

The Department of Water Technology and Environmental Engineering has 6 informal working groups covering all topics regarding water technology, chemistry, and biology: Anaerobic Technologies, Biological Wastewater Treatment, Hydrobiology and Microbiology, Physical-Chemical Wastewater Treatment, Aquatic Chemistry and Analytics, and Drinking Water Treatment. The research interests of these groups is often shared and they cooperate with each other on scientific work and education. The department cooperates with many institutions and companies from the Czech Republic as well as from other countries.

DWTEE has a long standing history of cooperation with various international professional associations. Professor Vladimir Madera, the Head of the Department at that time, was one of the founding fathers of IAWPRC, the predecessor of International Water Association (IWA). In 1988, Prof. Grau (Head of the Department after Prof. Madera) was elected IWA's Vice-President; in 1990-1994, he served as the Association's President. Members of the DWTEE are active in the following IWA specialist groups:  Anaerobic Digestion; Design, Operation and Costs of Large Wastewater Treatment Plants; Microbial Ecology; and Water Engineering (former Activated Sludge Population Dynamics). DWTEE also cooperates with the European Water Association (EWA), where Professor Jiri Wanner was President between 2005-2007.

[iduzel] => 18927 [canonical_url] => [skupina_www] => Array ( ) [url] => /department [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) [18953] => stdClass Object ( [nazev] => Students [seo_title] => Students [seo_desc] => [autor] => [autor_email] => [obsah] =>

The Department of Water Technology and Environmental Engineering (DWTEE) provides education in both Czech and English. If you are interested in a short, intensive course, Athens is the best choice for you. If you want to spend one or two semesters during your bachelor or masters studies at our Department and you are from an EU country, the Erasmus programme is designed for you. For students from both EU and non-EU countries, there is an alternative option with our Erasmus mundus programmes: Imete or ETeCoS3

The International Master of Science in Environmental Technology and Engineering (IMETE) programme is an International Erasmus Mundus programme and is delivered by a consortium of universities consisting of UCT Prague (Czech Republic), Ghent University (Belgium) and the UNESCO-IHE Institute for Water Education (Delft, Netherlands).

DWTEE participates as an associated partner in the PhD. Erasmus Mundus programme Enviromental technologies for contaminated solids, soils and sediments (ETeCoS3). PhD. students can come with financial support from Erasmus, Erasmus Mundus, or other foundations. ETeCoS3 is provided by a consortium consisting of the University of Cassino (Italy)UNESCO-IHE Institute for Water Education (Netherlands), and Université Paris-Est (France).

If you are interested in our research and would like to cooperate with us or work at our department, feel free to contact the leaders of working groups or the Head of the Department (Prof. Pavel Jeníček).

[iduzel] => 18953 [canonical_url] => [skupina_www] => Array ( ) [url] => /students [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) [18930] => stdClass Object ( [nazev] => Research [seo_title] => Research [seo_desc] => [autor] => [autor_email] => [obsah] =>

The Department of Water Technology and Environmental Engineering (DWTEE) is composed of 6 working groups. Scientific work covers all topics regarding water technology, chemistry, and biology. The working groups often cooperate on scientific work and education. The Department cooperates with many institutions and companies from the Czech Republic as well as from other countries.

 

⇒ Publications

 

⇒ Projects and Grants

[iduzel] => 18930 [canonical_url] => [skupina_www] => Array ( ) [url] => /research [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) [18929] => stdClass Object ( [nazev] => Collaboration [seo_title] => Collaboration [seo_desc] => [autor] => [autor_email] => [obsah] =>

Members of the Department of Water Technology and Environmental Engineering (DWTEE) take part in organizing international study programmes and work in many national and international expert associations. We will be glad to collaborate on research projects within one of the research fields studied at the Department.


→ International Study Programmes

DWTEE cooperates in two Erasmus Mundus international study programmes. For further information, contact Prof. Pavel Jeníček or Dr. Jan Bartáček.

šířka 215pxThe International Master of Science in Environmental Technology and Engineering (IMETE) programme is an International Erasmus Mundus programme. It trains people to apply and develop environmental technologies, offering a wide range of optional study fields in an international environment. IMETE is offered by a consortium consisting of three leading Higher Education Institutes: Ghent University (UGhent, Ghent, Belgium), UNESCO-IHE Institute for Water Education (UNESCO-IHE,Delft, Netherlands), and University of Chemical Technology, Prague (UCT Prague, Czech Republic). Student mobility within Europe is an integral part of the programme, which contains 120 ECTS (2 years). During the programme, students study in Delft (Netherlands), Prague (Czech Republic) and Ghent (Belgium). Master thesis research is carried out in one of these locations or at one of the many associated partner institutions all over the world. Between the first and the second years, summer school is held. More information here.

 

šířka 215px

The Environmental Technology for Contaminated Solids, Soils and Sediments (ETeCoS3)  programme provides education and research at the PhD level, training its doctoral candidates to think globally and co-work in multidisciplinary research teams. It is delivered by three universities: University of Cassino (Italy)UNESCO-IHE Institute for Water Education (Netherlands), and Université Paris-Est (France). The programme is centered around three key topics in environmental pollution: Heavy metals, recalcitrant organic pollutants, and contaminated solids. The programme focuses on fundamental and applied aspects to treat and remove these pollutants as well as on the development of recovery and reuse technologies with market potential. There will be a close connection to practical problems, as e.g. hot spots in the Balkans, brown fields in the Czech Republic, and sediments and soils polluted by mining activities in Minais Gerais (Brazil). UCT Prague (represented by the Department of Water Technology and Environmental Engineering) is an associated partner of the consortium.


→ Expert Associations

šířka 215pxThe Czech Water Association (CzWA) was formed in 2009 from the previous Association of Wastewater Treatment Experts (ACE CR). The CzWA is an independent non-governmental and non-profit organization promoting the sustainable and improved management of the total water cycle. The CzWA is a national member for the Czech Republic in the European Water Association and in the International Water Association.

 

šířka 215pxThe International Water Association (IWA) is a global reference point for water professionals, spanning the continuum between research and practice and covering all facets of the water cycle. Through its network of members and experts in research, practice, regulation, industry, consulting and manufacturing, IWA is in a better position than any other organisation to help water professionals create innovative, pragmatic and sustainable solutions to challenging global needs. Members of DWTEE are active in the following specialist groups of the association:  Anaerobic Digestion; Design, Operation and Costs of Large Wastewater Treatment Plants; Microbial Ecology; and Water Engineering (formerly Activated Sludge Population Dynamics).

šířka 215px

 

The European Water Association (EWA) today represent most European countries. The main goal of the association is to create a forum for the mutual information exchange in all aspects of water pollution control in general and of wastewater collection, treatment and disposal in particular. EWA provides professional service to the European Commission in matters dealing with water pollution control and consultancy of water legislation. The Czech Republic became a member of EWA in May 1997. The activities of EWA in the Czech Republic are organized and co-ordinated by the Czech Water Association (CzWA). Professor Jiri Wanner from DWTEE was EWA President between 2005-2007.

šířka 215pxThe World Toilet Organization (WTO) is a global non-profit organization committed to improving toilet and sanitation conditions worldwide. WTO is also one of the few organizations to focus on toilets instead of water, which receives more attention and resources under the common subject of sanitation. Founded in 2001 with 15 members, it now has 235 member organizations in 58 countries working towards eliminating the toilet taboo and delivering sustainable sanitation. Professor Jiri Wanner is a member of the WTO.

[iduzel] => 18929 [canonical_url] => [skupina_www] => Array ( ) [url] => /collaboration [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) [18921] => stdClass Object ( [nazev] => Life at DWTEE [seo_title] => Life at DWTEE [seo_desc] => [autor] => [autor_email] => [obsah] =>

Department Photogallery

šířka 215px

Department in News

[iduzel] => 18921 [canonical_url] => [skupina_www] => Array ( ) [url] => /life-at-dwtee [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) [18928] => stdClass Object ( [nazev] => Contact [seo_title] => Contact [seo_desc] => [autor] => [autor_email] => [perex] =>

University of Chemistry and Technology, Prague 

Faculty of Environmental Technology
Department of Water Technology and Environmental Engineering
Technická 5   
166 28 Praha 6 - Dejvice
Czech Republic

Building B, Room No. 116

[ikona] => info [obrazek] => [ogobrazek] => [pozadi] => [obsah] =>

Contacts

Head of Department:

Bartáček Jan, prof.

Scientific Secretary:

Bindzar Jan, Ing., Ph.D.

Treasurer:

Sýkora Vladimír, doc. Ing., CSc.

Librarian:

Šmejkalová Pavla, Dr. Ing.

Administration:

Vymětalová Andrea

[urlnadstranka] => [iduzel] => 18928 [canonical_url] => [skupina_www] => Array ( ) [url] => /contact [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [20365] => stdClass Object ( [nazev] => Sitemap [seo_title] => Sitemap [seo_desc] => [autor] => [autor_email] => [obsah] => [iduzel] => 20365 [canonical_url] => //tvp.vscht.cz/sitemap [skupina_www] => Array ( ) [url] => /sitemap [sablona] => stdClass Object ( [class] => sitemap [html] => [css] => [js] => [autonomni] => 1 ) ) [24134] => stdClass Object ( [obsah] => [iduzel] => 24134 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [70571] => stdClass Object ( [nazev] => WATER studies [seo_title] => WATER studies [seo_desc] => WATER studies [autor] => Lucie Pokorná [autor_email] => krayzell@vscht.cz [obsah] => [urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 70571 [canonical_url] => [skupina_www] => Array ( ) [url] => /WATERstudies [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) ) [iduzel] => 4171 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [4170] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [4173] => stdClass Object ( [obsah] => [iduzel] => 4173 [canonical_url] => //tvp.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [16843] => stdClass Object ( [obsah] => [iduzel] => 16843 [canonical_url] => //tvp.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [16844] => stdClass Object ( [obsah] => [iduzel] => 16844 [canonical_url] => //tvp.vscht.cz [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 4170 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [519] => stdClass Object ( [nadpis] => [data] => [poduzel] => stdClass Object ( [61411] => stdClass Object ( [nadpis] => [apiurl] => https://studuj-api.cis.vscht.cz/cms/?weburl=/sis [urlwildcard] => cis-path [iduzel] => 61411 [canonical_url] => [skupina_www] => Array ( ) [url] => /sis [sablona] => stdClass Object ( [class] => api_html [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 519 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [sablona] => stdClass Object ( [class] => web [html] => [css] => [js] => [autonomni] => 1 ) [api_suffix] => )

DATA


stdClass Object
(
    [nazev] => Research
    [seo_title] => Research
    [seo_desc] => 
    [autor] => 
    [autor_email] => 
    [obsah] => 

The Department of Water Technology and Environmental Engineering (DWTEE) is composed of 6 working groups. Scientific work covers all topics regarding water technology, chemistry, and biology. The working groups often cooperate on scientific work and education. The Department cooperates with many institutions and companies from the Czech Republic as well as from other countries.

 

⇒ Publications

 

⇒ Projects and Grants

[submenuno] => [urlnadstranka] => [ogobrazek] => [pozadi] => [newurl_domain] => 'tvp.vscht.cz' [newurl_jazyk] => 'en' [newurl_akce] => '/research' [newurl_iduzel] => 18930 [newurl_path] => 8548/4168/4169/4171/18930 [newurl_path_link] => Odkaz na newurlCMS [iduzel] => 18930 [platne_od] => 01.10.2017 13:49:00 [zmeneno_cas] => 01.10.2017 13:49:07.296648 [zmeneno_uzivatel_jmeno] => Lucie Pokorná [canonical_url] => [idvazba] => 23379 [cms_time] => 1713591770 [skupina_www] => Array ( ) [slovnik] => Array ( ) [poduzel] => stdClass Object ( [40680] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [40916] => stdClass Object ( [nadpis] => Patents [odkaz] => /research/40915 [text_odkazu] => Patents [perex] => [skupina] => [ikona] => tuzka [velikost] => 1 [pozice_x] => 1 [pozice_y] => 1 [barva_pozadi] => modra [countdown] => [obrazek_pozadi] => [iduzel] => 40916 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [40681] => stdClass Object ( [nadpis] => Projects and Grants [odkaz] => /research/projects-grants [text_odkazu] => Projects and Grants [perex] => [skupina] => [ikona] => lupa [velikost] => 1 [pozice_x] => 1 [pozice_y] => 2 [barva_pozadi] => modra [countdown] => [obrazek_pozadi] => [iduzel] => 40681 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [40682] => stdClass Object ( [nadpis] => Publications [odkaz] => /research/18932 [text_odkazu] => Publications [perex] => [skupina] => [ikona] => kniha [velikost] => 1 [pozice_x] => 2 [pozice_y] => 1 [barva_pozadi] => modra [countdown] => [obrazek_pozadi] => [iduzel] => 40682 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [40755] => stdClass Object ( [nadpis] => Equipment [odkaz] => /research/40706 [text_odkazu] => Equipment [perex] => [skupina] => [ikona] => kahan [velikost] => 1 [pozice_x] => 2 [pozice_y] => 2 [barva_pozadi] => modra [countdown] => [obrazek_pozadi] => [iduzel] => 40755 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) [40683] => stdClass Object ( [nadpis] => Work Groups [odkaz] => /research/work-groups [text_odkazu] => Work Groups [perex] => [skupina] => [ikona] => zarovka [velikost] => 2 [pozice_x] => 3 [pozice_y] => 1 [barva_pozadi] => modra [countdown] => [obrazek_pozadi] => [iduzel] => 40683 [canonical_url] => [skupina_www] => Array ( ) [url] => [sablona] => stdClass Object ( [class] => [html] => [css] => [js] => [autonomni] => ) ) ) [iduzel] => 40680 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/40680 [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) [40915] => stdClass Object ( [nazev] => Patents [seo_title] => Patents [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => zarovka [obrazek] => [obsah] =>

List of patents

2016

Pivokonský, L. Pivokonská, V. Janda: Method of increasing the efficiency of removal of organic substances produced by cyanobacteria and algae in the treatment of water properties by coagulation. CZ Patent 305835, 2016.

2014

D. N. Thanh, N. Strnadová: Adsorbent for removing arsenic and selenium from water. CZ Patent 304650, 2014

J. Vošta, L. Jelínek, K. Demnerová, H. Parschová, E. Mišová, M. Žemličková, V. Janda, J. Kašlíková: A means for accelerating healing of injured sites and for bactericidal and viral protection. CZ Patent 304327, 2014

2012

J. Macák, V. Janda, J. Vošta: Antimicrobial agent for conditioning of cooling circuits, CZ Patent 302960, 2012

2011

J. Macák, V. Janda, J. Vošta: Alkalisation and corrosion protection of energy equipment, CZ Patent 302467, 2011

J. Macák, V. Janda, J. Vošta: Removal of deposits and corrosion inhibition on heat exchange surfaces of power equipment, CZ Patent 302805, 2011

[poduzel] => Array ( ) [iduzel] => 40915 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/40915 [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [18933] => stdClass Object ( [nazev] => Grants and Projects [seo_title] => Grants and Projects [seo_desc] => [autor] => [autor_email] => [perex] => [ikona] => [obrazek] => [ogobrazek] => [pozadi] => [obsah] =>
Number Provider Title From To Contact person

FW06010567

TAČR

DIRE - Digital Twin of Water Recycling Technological Units

2023 2025 P. Dolejš
VB01000006 MV TWIN SKIN - Digital TWIN for Safety of Critical Infrastructure in water treatment plants 2022 2023 P. Dolejs
FW04020040 TAČR Digital Twin of a Wastewater Treatment Plant for Treatment Simulation and Optimization in Real Scale and Time 2022 2024 P. Dolejs
GAČR Unique ladderane phospholipids of anammox bacteria: potential valuable resource from sewage 2020 2022 V: Kouba
SS01020112 TAČR Technology for the removal of antibiotic resistance from sewage sludge applied in agriculture 2020 2023 J. Bartáček
Wider Uptake H2020

Achieving wider uptake of water-smart solutions

2020 2024 J. Wanner, M. Pečenka, I. Růžičková
SS01020210 TAČR

Use of cloud-computing and predictive wastewater analysis to reduce emissions to the aquatic ecosystem

2020 2023 J. Bartáček, P. Dolejš
FW01010142 TAČR Combination of advanced oxidation processes (AOP) and membrane separation for industrial wastewater treatment 2020 2022 J. Bindzar
shAMRock Norway fund shAMRock: shocking antimicrobial resistance 2020 2020 A. Milobedzka
REPARES H2020

Research platform on antibiotic resistance spread through wastewater treatment plants

2019 2022 J. Bartacek, D. Vejmelkova, P. Jenicek, A. Milobedzka, L. Pokorna
TJ02000139 TAČR Development of technology for elimination of micro-pollutants and antibiotic resistance genes in the environment and human organism 2019 2021 D. Vejmelkova, P. Smejkalova, V. Kouba, I. Karpisek, T. Pacholska
TH04030202 TAČR Nanotechnology for reducing phosphorus load on ecosystems 2019 2021 J. Wanner, M. Pečenka, I. Růžičková
TK01030051 TAČR Biomethanizace oxidu uhličitého na biomethan s využitím vodíku 2018 2023 D. Pokorná, J. Zábranská
TH03030080 TAČR

The use of treated wastewater in water management of cities of the future

2018 2020 J. Wanner, V. Janda, M. Pecenka, A. Benakova
TH03030408 TAČR

Modular technology for separate cleaning of grey water

2017 2020 J. Bartacek, B. Satkova
17-25781S GAČR

Physiological reaction of anammox microorganisms to cold shocks

2017 2019 V. Kouba, J. Bartacek
SuPER-W The Marie Skłodowska-Curie Action - European joint doctorate

Sustainable Product, Energy and Resource Recovery from Wastewater

2016 2020 J. Bartacek, P. Jenicek
REEF-2W EU-INTERREG

Increased renewable energy and energy efficiency by integrating, combining and empowering urban wastewater and organic waste management systems

2017 2020 P. Jeníček
TA04020951 TAČR Biologická produkce methanolu z odpadního methanu  2015 2017 J. Bartáček
TH01021100 TAČR Recyklace energie ze splaškových odpadních vod v anaerobních membránových reaktorech v prostředí střední Evropy  2015 2017 J. Bartáček
CSM12 MŠMT Společná laboratoř pro výzkum nových procesů a technologií úpravy vlastností vody  2015 2015 V. Janda
TA04020217 TAČR Inovativní způsob čištění odpadních vod se zaměřením na zisk nutrientů v čisté formě  2014 2017 J. Wanner,
M. Pečenka,
I. Růžičková
TA04021421 TAČR Komplexní přístup k řešení snižování znečištění reaktivními formami fosforu a dusíku v hydrologicky vymezené části povodí vodárenské nádrže Švihov  2014 2017 J. Wanner,
M. Pečenka,
I. Růžičková
TA03021160 TAČR Využití modelovacího protokolu pro optimalizaci procesu na čistírnách odpadních vod a energetických úspor na nich  2013 2015 J. Wanner,
M. Pečenka
TA03021413 TAČR Využití biomembránových procesů pro odstraňování sulfanu z bioplynu pomocí biochemické oxidace  2013 2015 P. Jeníček
FR-TI4/254 MPO ČR Kontejnerová technologie pro čištění průmyslových odpadních vod  2012 2015 J.  Wanner
  NAKI Nové materiály a technologie pro konzervaci materiálů památkových objektů a preventivní památkovou péči 2011 2015 J. Říhová Ambrožová
TA01020798  TAČR Komplexní biotechnologie pro spojené odstraňování sulfanu z bioplynu a nutrientů z odpadních vod na čistírnách odpadních vod, bioplynových stanicích a podobných technologických celcích 2011 2014 D. Pokorná
TA01020592  TAČR Dopady na mikroklima, kvalitu ovzduší, ekosystémy vody a půdy v rámci hydrické rekultivace hnědouhelných lomů 2011 2014 J. Říhová Ambrožová
FR-TI1/327 MPO ČR Vývoj odsiřovacího biofiltru pro čištění bioplynu, doba řešení  2009 2013 J.  Zábranská
MSM 6046137308 MŠMT ČR Studium chemických a biologických procesů pro ochranu životního prostředí 2007 2013 P. Jeníček
ERG-2010-268417 European Comission Biofilms in Bioreactors for Advanced Nitrogen Removal from Wastewater 2010 2013 J. Bartáček
QI92A286 NAZV MZe ČR Zvýšení produkce bioplynu z rostlinné biomasy použitím anaerobních hub 2009 2012 M. Dohányos
IAAX00430802 GAČR Účinky výbojového plazmatu na chemické a biologické znečištění ve vodě 2008 2012 J. Říhová Ambrožová
203/09/1349 GAČR Stanovení a biologická rozložitelnost látek nebezpečných pro životní prostředí v hydrosféře 2009 2011 V. Sýkora
FI-IM5/183  MPO ČR Suchá fermentace biomasy a tříděného biodegradabilního odpadu s energetickým vyžitím bioplynu k výrobě elektrické energie 2008 2010 J. Zábranská
104-08-0435 GAČR  Inteligentně strukturované mesoporézní vrstvy TiO2 antibakteriálními a řízeně proměnnými smáčecími vlastnostmi 2008 2010 J. Říhová Ambrožová
MEIF-CT-2006-041896 European Comission Bioavailability of Heavy Metals in Anaerobic Granular Sludge 2008 2010 J. Bartáček
SP/3g4/129/07 MŽP ČR Intenzifikace produkce bioplynu 2007 2009 M. Dohányos
INGO LA279 MŠMT ČR Vedení Evropské asociace pro vodu (EWA) a organizace přenosu a výměny informací a znalostí 2006 2009 J. Wanner
FP6-018525 European Comission Reduction, modification and valorization of sludge 2006 2009 P. Jeníček
1M4531477201    Výzkumné centrum pro nanopovrchové inženýrství  2005 2009 J. Říhová Ambrožová
1H-PK2/42 MPO  Automatizovaná linka pro autotermní aerobní hygienizaci a stabilizaci kalů (ATAD) z komunálních čistíren odpadních vod – výzkum, vývoj, výroba a odzkoušení prototypu a návrh provozního zařízení 2005 2009 M. Pečenka
FT –TA2/066 MPO  Výzkum a vývoj systému dezintegrace vláknitých struktur v aktivovaném kalu 2005 2009 I. Růžičková
1G58052  NAZV MZe ČR  Výzkum řešení degradace jakosti pitné vody při její akumulaci 2005 2008 J. Říhová Ambrožová
CZ.04.3.07/ 3.2.01.3/3220   Centrum technického celoživotního vzdělávání při VŠCHT Praha, Mikrobiologie základních systémů. 2006 2008 J. Říhová Ambrožová
MEXT-CT-2003-509567 European Comission Novel Biological Engineering Processes for Heavy Metal Removal and Recovery 2004 2008 J. Bartáček
104/05/2501  GAČR  Studium biologických přeměn sloučenin síry pro využití v technologiích ochrany prostředí 2005 2007 J.  Zábranská
104/05/0798  GAČR  Anaerobní technologie pro zpracování odpadů s vysokými obsahy proteinů 2005 2007 J.  Zábranská
FT-TA/034 MPO  Ekologicky šetrná inhibice množení patogenních bakterií a řas v cirkulačních chladicích systémech jaderných elektráren a jiných podobných technologických zařízeních 2004 2006 J. Říhová Ambrožová
104/03/0408 GAČR  Nitritace a denitritace jako prostředek k racionalizaci biologického odstraňování dusíku z odpadních vod 2003 2005 P. Jeníček
203/03/0925 GAČR  Výzkum a využití reakce kovového železa s halogenovanými uhlovodíky ve vodě v environmentální chemii 2003 2005 V. Janda
104/03/0119 GAČR  Biomethanizace směsných odpadů a rostlinné biomasy 2003 2005 M. Dohányos
GA104/03/1550 GAČR Rezistence ekologicky významných alkylfenylpolyethylenglykoletherových povrchově aktivních látek a jejich intermediátů ve vodním prostředí 2003 2005 P. Pitter
203/03/0922 GAČR  Odstraňování těžkých kovů z vod použitím netradičních pevných sorbentů  2003 2005 N. Strnadová
QC 0244 NAZV MZe ČR Integrovaný přístup při návrhu rekonstrukcí a modernizací ČOV 2000 2004 I. Růžičková
202/02/1026 GAČR  Kombinovaný impulzní vysokonapěťový výboj pro čištění vody 2002 2004 V. Janda
203/01/D016 GAČR Studium biologických pěn na aktivačních čistírnách v ČR –charakterizace pěnotvorného potenciálu aktivovaného kalu a vliv detergentů 2002 2004 I. Růžičková
FF-P/080 MPO Výzkum a vývoj technologií termální aerobní stabilizace organického odpadu pro průmyslové využití 2002 2004 I. Růžičková
MSM 223200003 MŠMT ČR Studium chemicko-technologických procesů pro ochranu životního prostředí a zpracování paliv 1999 2004 M. Dohányos
QD 1069 NZVA MZe ČR Minimalizace množství produkovaných čistírenských kalů 2001 2004 M. Dohányos
QD 1003/2001 NZVA MZe ČR Výzkum efektu úpravy vody na její jakost při prodlužujícím se zdržení v rozvodné síti 2001 2004 J. Říhová Ambrožová
QD 1004/2001 NZVA MZe ČR Rekonstrukce a modernizace úpraven vod a vodovodů 2001 2004 J. Říhová Ambrožová
203/02/0303 GAČR  BDOC – nový parameter pro hodnocení biologické stability vody 2002 2004 N. Strnadová
203/02/P011 GAČR Biologická rozložitelnost látek ovlivňujících povrchové napětí vod 2002 2004 J. Bindzar
FF-P/080 MPO  Výzkum a vývoj technologií termální aerobní stabilizace organického odpadu pro průmyslové použití 2002 2004 M. Pečenka
  MVV SRN Foam and scum in biological wastewater treatment 2001 2003 J. Wanner
COST 624   Optimal wastewater management 1999 2003 J. Wanner
104/00/0867 GAČR Intenzifikace kalového hospodářství a možnosti potlačení pěnění na čistírnách odpadních vod pomocí radiační technologie 2000 2002 P. Jeníček
203/00/1207 GAČR Vedlejší produkty chlorace vody obsahující makromolekulární organické látky 2000 2002 V. Janda
  DBU a ATV-DVWK SRN Knowledge and technology transfer in wastewater and waste from Germany to the Czech Republic, Hungary ana Poland 2000 2002 J. Wanner
č. 0653 MŠMT, FRVŠ F1 Využití počítačů ve výuce předmětu Hydrochemie 2001 2001 P. Pitter
EP9346 NAZV MZe ČR Hygienizace čistírenských kalů 1999 2001 M. Dohányos
PL971185 EU INCO COPERNICUS Biotechnological procedures for sustainable water management 1998 2001 J. Wanner
203/99/1671 GAČR Odstraňování beryllia ze zdrojů pitné vody 1999  2001 N. Strnadová
202/99/0305 GAČR Generace chemicky aktivních látek elektrickými výboji ve vodě 1999  2001 V. Janda
EP 9259 NAZV MZe ČR  Využití poznatků z populační dynamiky aktivovaných kalů pro řešení provozních problémů systémů biologického odstraňování nutrientů 1999 2001 M. Pečenka
203/97/0701 GAČR Chemická struktura a biodegradabilita komplexotvorných látek 1997 1999 P. Pitter
EP 7209  NAZV MZe ČR Vyhodnocení technologií odstraňování nutrientů na čistírnách odpadních vod v České republice za účelem zpřesnění návrhových postupů a optimalizace provozu 1997 1999 J. Wanner
EP 7210  NAZV MZe ČR Národní přehled výskytu vláknitých mikroorganismů v aktivačních čistírnách v ČR a výzkum a ověření opatření ke snížení jejich negativního dopadu na funkci ČOV 1997 1999 J. Wanner
104/96/0449 GAČR Kombinované odstraňování organických látek a nutrientů z odpadních vod anaerobně-aerobním čištěním 1996 1998 P. Jeníček
203/96/0617 GAČR Vývoj instrumentace a metodologie nadkritické tekutinné extrakce vodných medií pro stanovení organických polutantů 1996 1998 V. Janda
202/96/0746 GAČR Impulzní koronové výboje pro plazmochemickou likvidaci organických příměsí ve vzduchu a ve vodě 1996 1998 V. Janda
  Körberova nadace Use of gene probes and microprobes in environment and medicine 1995 1998 J. Wanner
COST 686   Integrated wastewater management 1993 1998 J. Wanner
  MVV SRN Snižování zbytkového organického znečištění v odtocích biologických čistíren odpadních vod 1991 1998 J. Wanner
CIPA-CT94-0146 EU INCO COPERNICUS Supercritical fluid extraction methods and instrumentation development 1995 1997 V. Janda
MŠ OK 063 MŠMT ČR SFE PAH z vodných roztoků 1995 1997 V. Janda
FITA II Ghent University Development of novel technological principles for ecotoxicological bioassays 1995 1997 J. Říhová Ambrožová
203/95/0058 GAČR Kombinovaná metoda iontové výměny a biologické denitrifikace 1995 1997 N. Strnadová
206/94/1183 GAČR Řízení separačních vlastností aktivovaných kalů v systémech biologického odstraňování nutrientů z odpadních vod  1994 1996 J. Wanner
  EU ENVIRONMENT Řízení bytnění a biologických pěn v aktivačních čistírnách s biologickým odstraňováním nutrientů 1993 1996 J. Wanner
  MŠMT, FRVŠ Aplikace Granových titrací v analytice vody 1996 1996 P. Pitter
104/96/0449 GAČR Kombinované odstraňování organických látek a nutrientů z odpadních vod anaerobně-aerobním biologických čištěním 1996 1996 P. Šmejkalová
203/94/117 GAČR Minimalizace produkce tuhé fáze při chemickém srážení těžkých kovů 1994 1994 N. Strnadová
č. 001 Fond dynamického rozvoje vysokých škol Zavedení extrakce nadkritickou tekutinou do výuky 1994 1994 V. Janda
GA/520/93 MŽP Testování biologické rozložitelnosti výrobků, metody, interpretace výsledků a návrh limitů 1993 1993 P. Pitter

[urlnadstranka] => [poduzel] => stdClass Object ( [52912] => stdClass Object ( [nazev] => Combination of advanced oxidation processes (AOP) and membrane separation for industrial wastewater treatment [seo_title] => AOP + MBR [seo_desc] => [autor] => [autor_email] => [perex] =>

Provider: 

The Technology Agency of the Czech Republic

Call:

Duration:

2020-2022

Number/acronym:

FW01010142

Investigator/s:

  • Jan Bindzar, PhD

Partners:

  • ENVI-PUR, s.r.o.
[ikona] => [obrazek] => [obsah] =>

Project goal:

The project aims to assess various advanced oxidation processes (AOPs) for the treatment of difficult to treat industrial wastewater. Subsequently, the wastewater will be purified by means of a membrane biological reactor (MBR), which guarantees a high outflow quality. To carry out laboratory and operational tests, a pilot plant model with AOP and subsequent MBR will be installed (fitted) at the selected location. Several AOPs based on the use of UV radiation, ozone and hydrogen peroxide will be evaluated in the project. The long-term operation of the plant will evaluate the efficiency of AOPs, the efficiency of the biological process, the development of permeate quality, the economic and energy balance, and the utilization of purified waste water for recycling.

[urlnadstranka] => [iduzel] => 52912 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/aop-mbr [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [68522] => stdClass Object ( [nazev] => DIRE [seo_title] => DIRE [seo_desc] => [autor] => [autor_email] => [perex] =>

Digital Twin of Water Recycling Technological Units

Provider

The Technology Agency of the Czech Republic

Program

6. public tender by Ministry of Industry and Trade - TREND

Duration

01/2023 – 12/2025

Investigators at UCT Prague

Project partners

  • Ústav pro hydrodynamiku AV ČR, v.v.i.
  • VDT Technology, a.s.
  • Mezinárodní bezpečnostní institut, z.ú.
[ikona] => [obrazek] => [ogobrazek] => [pozadi] => [obsah] =>

Project goals

The aim of the project is to develop and test a simulation tool for monitoring and control of reuse technologies using a digital twin for existing pilot-plant technological units for treated municipal wastewater reuse at WWTP Brno-Modřice. The innovation includes the implementation of advanced sensors, the creation of a digital twin of pilot-plant units, and the creation of variant self-learning algorithms for steady state and dynamic behavior simulation.By correlating the monitored variables, we will achieve create soft sensors for pollution monitoring and simulation of reuse efficiency, which will allow us to predict and minimize risks for reused water applications according to EU Regulation 2020/741. The output will be a digital twin module integrated into a comprehensive reuse technology solution

[urlnadstranka] => [iduzel] => 68522 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/dire [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [66537] => stdClass Object ( [nazev] => New Plant [seo_title] => New Plant [seo_desc] => [autor] => [autor_email] => [perex] =>

Digital Twin of a Wastewater Treatment Plant for Treatment Simulation and Optimization in Real Scale and Time

 

Provider

The Technology Agency of the Czech Republic

Program

First public tender by Ministry of Industry and Trade - TREND

Duration

03/2022 – 06/2024

Investigators at UCT Prague

  • Petr Dolejš, Ph.D. – coordinator
  • Ing. Jan Bartáček, Ph.D.
  • Markéta Andreides
  • Vojtěch Kouba, Ph.D.

Project partners

  • Prague Advanced Technology and Research Innovation Center, a.s. - koordinátor
  • Vodohospodářský podnik, a.s.
  • Vodovody a kanalizace Beroun, a.s.
[ikona] => [obrazek] => [ogobrazek] => [pozadi] => [obsah] =>

Project goals

The main goal of the project is to ensure effective wastewater treatment by implementing new knowledge from the field of informatics, advanced technologies and principles of industry 4.0, with the possibility of real-time optimization based on simulations of technological measures in the digital twin of a wastewater treatment plant. Another goal is the integration of a new principle of documentation management using the digital twin, which, thanks to a database system in the object architecture, will enable automation of operational tasks, efficient management of operational data and continuous evaluation of defined performance indicators (KPIs).

[urlnadstranka] => [iduzel] => 66537 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/new-plant [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [66536] => stdClass Object ( [nazev] => TWIN SKIN [seo_title] => TWIN SKIN [seo_desc] => [autor] => [autor_email] => [perex] =>

Digital TWIN for Safety of Critical Infrastructure in water treatment plants

Provider

Ministry of Interior of Czech Republic

Program

VB - Security Research Program of the Czech Republic 2021-2026: development, testing and evaluation of new security technologies (SECTECH) (2021 - 2026)

Duration

01/2022 – 12/2023

Investigators at UCT Prague

  • Petr Dolejš, Ph.D. (koordinátor projektu)
  • Dominik Andreides
  • Ing. Pavla Šmejkalová
  • Ing. Jan Bartáček, Ph.D.

Project partners

  • Ústav pro hydrodynamiku AV ČR, v.v.i.
  • VDT Technology, a.s.
  • Mezinárodní bezpečnostní institut, z.ú.
[ikona] => [obrazek] => [ogobrazek] => [pozadi] => [obsah] =>

Project goals

The project will implement the emerging digital twin of a water treatment plant (WTP) enabling the simulation of technological and process measures for various operating conditions, management of documentation, and especially the management of operational risks. Thanks to the 24-hour prediction of raw water quality input using the computational algorithm of neural networks, operational risks will be eliminated. This predictive knowledge of the input parameters to the water treatment process will increase, together with the expert simulation in a mathematical model, the robustness of the critical infrastructure system and ensure the supply of quality drinking water to the population. Simulations in the digital twin will be performed in real-time on the infrastructure of testing authorities.

 

[urlnadstranka] => [iduzel] => 66536 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/twin-skin [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [62104] => stdClass Object ( [nazev] => Ladderosome [seo_title] => Ladderosome [seo_desc] => [autor] => [autor_email] => [perex] =>

Provider: 

Czech Science Foundation

Title:

Unique ladderane phospholipids of anammox bacteria: potential valuable resource from sewage

Duration:

01/2020 - 12/2022

Investigator/s:

[ikona] => [obrazek] => 0003~~80lMSUktyi_Oz01VMAYA.png [ogobrazek] => [pozadi] => [obsah] =>

Hlavní cíle:

  • Isolation of ladderane phospholipids from wastewater treatment plants waste biomass
  • Characterization of ladderanes and their membranes
  • Research of ladderanes potential applications

Abstrakt:

Anammox bacteria are standardly applied in the wastewater treatment process for the removal of nitrogen. Their waste biomass and other sludge compose a great amount of waste from the treatment plants and its further utilization or recycling is often problematic. However, unlike other bacteria, anammox contain unique lipids in their membranes, the ladderanes, which characteristics are still not sufficiently explored. Therefore, this project is devoted to the cultivation of anammox bacteria, the isolation and characterization of ladderanes, and research on their possible applications in the chemical or pharmaceutical industry. The ultimate goal is to recover the waste anammox biomass and turn it into a high-value product, a source of ladderane phospholipids.

For students: join our scientific project, write to koubav@vscht.cz

 ◳ pipeline (png) → (šířka 450px)

[urlnadstranka] => [iduzel] => 62104 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/ladderosome [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [55814] => stdClass Object ( [nazev] => Technology for removal of antibiotic resistance genes from sewage sludge applied in agriculture [seo_title] => ARG Tech [seo_desc] => [autor] => [autor_email] => [obsah] => [urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 55814 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/arg-tech [sablona] => stdClass Object ( [class] => stranka_novinky [html] => [css] => [js] => [autonomni] => 1 ) ) [54927] => stdClass Object ( [nazev] => [seo_title] => WaterScan Toolbox [seo_desc] => [autor] => [autor_email] => [obsah] =>

 ◳ Grafika medailonek projektu (jpg) → (originál)

[urlnadstranka] => [ogobrazek] => [pozadi] => [iduzel] => 54927 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/waterscan-toolbox [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [54926] => stdClass Object ( [nazev] => Achieving wider uptake of water-smart solutions [seo_title] => Wider Uptake [seo_desc] => [autor] => [autor_email] => [perex] =>

Wider uptake

Provider: 

European Commission

Call:

The project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 869283

Duration:

2020-2024

Investigator/s:

  • Prof. Ing. Jiří Wanner, DrSc.
  • Ing. Iveta Růžičková, Ph.D.
  • Ing. Martin Pečenka, Ph.D.
  • Ing. Adéla Puškáčová (Ph.D. student)
  • Solomon Ofori, MSc. (Ph.D. student)
  • Ing. Daniel Pliska (Ph.D. student)
  • Ing. Dominik Matýsek (Ph.D. student)

Partners:

  • Czech Technical University
  • PVS

a5 (výška 215px) a6 (výška 215px)

[ikona] => [obrazek] => 0001~~CyhKLU7NK0ksyczPM1QwAgA.jpg [ogobrazek] => [pozadi] => [obsah] =>

Project Objective

The overall objective is to facilitate industrial symbiosis by co-development of a roadmap towards wider uptake of water-smart solutions for wastewater reuse and resource recovery.

Specific objectives

To demonstrate innovative technical solutions that optimize water reuse and resource recovery in selected industry settings by:

  1. Demonstrating safe use of treated effluent for irrigation purposes in grey-green solutions for urban development with reasonable water transportation expenses.
  2. Developing and applying monitoring and control schemes to adequately manage the health and quality risks associated with reuse of treated wastewater and recovered resources.
  3. Optimization of the value chains to quantify the improved resource efficiency and economic benefits, also with respect to future applications.

Abstract

WIDER UPTAKE will demonstrate innovative solutions for wastewater reuse and resource recovery where market utilization of the recovered resource(s) (water, nutrients, materials, energy) is achieved through a symbiosis between the utility and industry. WIDER UPTAKE will apply a case study approach that will provide applied knowledge on the operationalization of the solutions in a range of socio-economic, environmental and climatic conditions. The case study approach will cover different situations with regards to the availability of water resources and what type of resources e.g. nutrients, biosolids, energy that are in focus for recovery. The scale and maturity in the development of the water-smart symbiotic solutions will also differ between the case studies allowing for the sharing of knowledge and identifying best practices at different stages of implementation.

a2 (šířka 450px)

[urlnadstranka] => [iduzel] => 54926 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/wider-uptake [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [54925] => stdClass Object ( [nazev] => The use of treated wastewater in water management of cities of the future [seo_title] => Recyklace [seo_desc] => [autor] => [autor_email] => [perex] =>

Provider: 

Technology Agency of the Czech Republic

Call:

Duration:

2018 - 2020

Investigator/s:

  • Prof. Ing. Jiří Wanner, DrSc.
  • Prof. Ing. Václav Janda, CSc.
  • Ing. Martin Pečenka, Ph.D.
  • Ing. Andrea Benáková, Ph.D.
  • Ing. Eliška Peterková (Ph.D. student)
  • Ing. Adéla Puškáčová (Ph.D. student)

Partners:

  • PVK, a.s.

 2 (šířka 215px)

[ikona] => [obrazek] => 0001~~M1TQMNQEAA.jpg [pozadi] => [obsah] =>

Project objectives:

The aim of the project is to create chemical and technological conditions for the recycling and reuse of purified urban wastewater and where it is possible to replace so far usage of expensive drinking water for non-drinking purposes. The reused water will be utilized mainly for agricultural and other irrigation, irrigation for lawns of sports grounds (golf, football, etc.), urban greenery, service water for maintaining the cleanness of towns and municipalities. After measurements in the laboratory, proposed operations and their combinations are tested at the pilot scale in the form of a module, treating the effluent from the current water line in the Central Wastewater treatment plant in Prague.

Specific objectives:

The specific aim was a proposal of the composition of laboratory devices for testing of the technological arrangement of the water treatment line, treating the effluent from CWWTP to water suitable for irrigation, and realization of testing the particular variations of technological arrangements in pilot scale. The economic intention is to produce cheaper service water than potable water, often used for these activities. The non-economic aim is the conservation of natural sources – i.e. the raw groundwater and surface water resources used for potable water production.

[urlnadstranka] => [iduzel] => 54925 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/recyklace [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [54924] => stdClass Object ( [nazev] => Nanotechnology for reducing phosphorus load on ecosystems [seo_title] => MEMFOS [seo_desc] => [autor] => [autor_email] => [perex] =>

Provider: 

Technology Agency of the Czech Republic

Call:

The project has received funding from the innovation programme for support applied research and experimental development - EPSILON, under grant agreement TH04030202.

Duration:

2019 - 2021

Investigator/s:

  • Prof. Ing. Jiří Wanner, DrSc.
  • Ing. Iveta Růžičková, Ph.D.
  • Ing. Martin Pečenka, Ph.D.
  • Ing. Lenka Miklíková (Ph.D. student)

Partners:

 

[ikona] => [obrazek] => 0002~~S0xMTAQA.jpg [pozadi] => [obsah] =>

Motivation:

In recent years, eutrophication has proven to be a serious threat to water bodies. Excess of nutrients in surface water causes increased growth of cyanobacteria, which further causes a reduction of dissolved oxygen, death of fish due to suffocation and complicates processes of water treatment for further use. The deteriorating quality of water resources is directly related to human activities. One of the main sources of nutrients in water is effluent from municipal wastewater treatment plants. Therefore, it is necessary to pay attention to this problem and try to develop new or improve existing methods of nutrient removal in municipal wastewater treatment plants, especially forms of phosphorus, and thus work to improve the quality of water resources.

Project Objective:

The main objective of the Project is the introduction of environmental technologies into the wastewater treatment processes (WWTP) with the aim of reducing the hazardous phosphorus impact on the environment especially in the water protection sphere, and/or minimizing the risks of the negative influences of this pollutant on living organisms including human health. It is specifically, research and development of technologies focused on the tertiary treatment of wastewaters using the nanofibers technology. The main goal of this Project is obtaining a utility model – MEMFOS system and functional sample. The MEMFOS system will find the application at wastewater treatment plants whose outflows will be required to show total phosphorus concentrations in micrograms.

Specific objectives:

In the area of tertiary wastewater treatment, the Czech Republic does not use technology that would ensure microgram values of phosphorus in effluent neither technology using nanomaterial. Due to the planned changes in the law, will be required a reduction of concentration of phosphorus in the effluent from WWTP. It is necessary to respond to this requirement, i.e. find a solution and thus be prepared for the emerging market in the water sector. The solution procedure includes the following points:

  1. Laboratory testing of the behavior of existing nanomaterials by using the effluent from wastewater treatment plants with subsequent modification of the material so that that material can be used as a main functional element for the MEMFOS pilot plant.
  2. Design of the MEMFOS pilot plant.
  3. Construction of the MEMFOS pilot plant.
  4. Testing of the MEMFOS pilot plant.
  5. Optimization of operations of MEMFOS pilot plant.

Keywords:

filtering nanofibers material; tertiary treatment; wastewater; wastewater treatment plant; phosphorus; environmental technology

aaa (šířka 450px)

[urlnadstranka] => [iduzel] => 54924 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/memfos [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [50578] => stdClass Object ( [nazev] => Biomethanization of carbon dioxide to biomethane using hydrogen - Biomethane [seo_title] => Biomethane [seo_desc] => [autor] => [autor_email] => [perex] =>

Provider: 

The Technology Agency of the Czech Republic

Call:

THÉTA Programme for applied research, experimental development, and innovations

Duration:

09/2018 - 08/2023

Investigator/s at UCT Prague:

  • Dr. Dana Pokorná
  • prof. Jana Zábranská
  • MSc. Zdeněk Varga
[ikona] => [obrazek] => 0001~~Sy7OjQ9OzsjMSYl3yszPTS3JSMyLN0lNM7JItDAwSgEA.jpg [obsah] =>

Project goal:

The goal of the project is finding of technological parameters and the bioreactor configuration for biological conversion of carbon dioxide to biomethane, which is transportable by the natural gas grid. The project comprises a determination of cultivation conditions of hydrogenotrophic methanogens, an introduction of hydrogen to the system, finding of bioconversion limits during hydrogen dosing to the external bioreactor or directly to the anaerobic fermenter. Further different possibilities of an application in the technology of biogas production will be evaluated. This approach enables to exploit existing technological and energetical infrastructures of biogas plants and wastewater treatment plants and the implementation could be very fast.

[urlnadstranka] => [iduzel] => 50578 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/biomethane [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [50595] => stdClass Object ( [nazev] => Development of technology eliminating micropollutants and antibiotic resistance genes input into the environment and the human organism [seo_title] => MICROGENEL [seo_desc] => [autor] => [autor_email] => [perex] =>

Provider: 

The Technology Agency of the Czech Republic

Call:

ZÉTA - 2nd tender of the program for the support of applied research

Duration:

06/2019 - 05/2021

Number/acronym:

TJ02000139 / MICROGENEL

Investigator/s:

  • Dana Vejmelková, PhD.
  • Pavla Šmejkalová, PhD.
  • Vojtěch Kouba MSc.
  • Ivan Karpíšek, MSc.
  • Tamara Pacholská, MSc.
  • Stanislav Gajdoš, MSc.

Partners:

[ikona] => [obrazek] => [obsah] =>

Main goals:

Design a unit for removing micropollutants and antibiotic resistance genes from small water sources of drinking and wastewater.

Abstract:

The project responds to two global problems: the spread of antibiotic resistance genes (ARGs) and the general pollution of the environment by micropollutants (drug and pesticide residues). The growth of antibiotic resistance is a complex problem and these days it is one of the greatest civilization threat. Many micropollutants have already been shown to have negative effects on aquatic and soil organisms that can significantly disrupt the affected ecosystem. This contamination can have a direct and indirect impact on human health. The micropollutants are commonly found in wastewaters, however, wastewater treatment plants (WWTPs) were not designed to remove them. Treated wastewater is a potential source of water for further application, but care must be taken to avoid the spread and accumulation of ARGs and micropollutants, e.g. by using contaminated water for crop watering. The Czech Republic will have to adapt in the near future to new Regulation of the European Parliament and of the Council on minimum requirements for water reuse, which is currently under preparation. The main objective of this Regulation is to mitigate the causes and consequences of water scarcity throughout the EU. This project focuses on the treatment of wastewater from smaller local sources, such as a small WWTP or recreational facility with a domestic treatment plant, with the aim of potential reuse of these waters for utility purposes. Furthermore, the system will be optimized for the recovery of local underground sources of drinking water contaminated with pesticides from agricultural activities. This enables to use it in areas with a lack of (high-)quality water for housing, recreation, and services.

[urlnadstranka] => [iduzel] => 50595 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/50595 [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [50582] => stdClass Object ( [nazev] => shAMRock: shocking antimicrobial resistance [seo_title] => shAMRock [seo_desc] => [autor] => [autor_email] => [perex] =>

Provider: 

The Ministry of Finance – National Focal Point for the EEA and Norway Grants in the Czech Republic

Call:

Grant applications for bilateral initiatives under the Fund for Bilateral Relations within the framework of the EEA and Norway Grants 2014-2021 (2nd Call)

Duration:

01/2020 - 07/2020

Investigator/s:

 EEA-and-Norway_grants (výška 215px)

[ikona] => [obrazek] => 0004~~88svKk-sVCgoys9KTS5RMAIA.jpg [pozadi] => [obsah] =>

Main goals:

  • building knowledge capacity of Czech and Norwegian partners
  • training Norwegian researchers in MinION sequencing
  • training Czech researchers in  public engagement, science communication, and successful grant writing
  • short term internships for Czech student
  • involving society in the discussion on the spread of antibiotic resistance during informal meetings - Café Scientifique
  • raising Czech scientific and non-scientific societies awareness in the field defined by the initiative
  • promoting EEA and Norway grants


Abstract:

The shAMRock bilateral initiative aims to raise social awareness of the antimicrobial resistance (AMR) problem, share knowledge obtained during bilateral workshops and information from the monitoring of Czech and Norwegian wastewater treatment plants (WWTPs) using culture-dependent and molecular methods. Both institutions involved in the initiative have a mutual interest with the aim to raise social awareness of AMR in WWTPs. The initiative will increase understanding between the Czech Republic and Norway.

[urlnadstranka] => [iduzel] => 50582 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/shamrock [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [48131] => stdClass Object ( [nazev] => Modular technology for separate cleaning of grey water - GreySystem [seo_title] => GreySystem [seo_desc] => [autor] => [autor_email] => [perex] =>

Provider: 

The Technology Agency of the Czech Republic

Call:

Program to support applied research and experimental development EPSILON

Duration:

01/2017 - 12/2020

Investigator/s:

[ikona] => [obrazek] => 0002~~88lPz1fw9PRUcC9KrQyuLC5JzQUA.jpg [obsah] =>

Main goals:

  • Design of alternative solutions for gray waters recycling .
  • Determination of health risks and risks to the environment.
  • Use of Internet of Things (IoT) technologies.


Abstract:

The most common objection to the gray waters recycling is that these waters contain harmful substances or the environment and may affect health or the environment. In practice, integration into technical building equipment (TZB) as well as integration into the public water supply and sewerage system (disputes concerning the payment of sewerage and connection to the water supply network from which the water used) has not yet been resolved or is not verified in practice.
The aim is to design and verify several solutions for recycling gray waters, to identify health risks and risks to the environment. Based on the results, propose suitable solutions with respect to the purpose of use. Furthermore, technically solve the objection, connection to public water supply and sewerage, using the Internet of things (IoT) technology.

[urlnadstranka] => [iduzel] => 48131 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/greysystem [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [48167] => stdClass Object ( [nazev] => REPARES [seo_title] => REPARES [seo_desc] => [autor] => [autor_email] => [obsah] => [urlnadstranka] => [iduzel] => 48167 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants/repares [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) ) [iduzel] => 18933 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/projects-grants [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [18932] => stdClass Object ( [nazev] => Publications [seo_title] => Publications [seo_desc] => [autor] => [autor_email] => [perex] =>

List of Publications

[ikona] => kniha [obrazek] => [ogobrazek] => [pozadi] => [obsah] =>

2024

Solomon OforiDavid Kwesi Abebrese, Aleš Klement, Daniel Provazník, Ivana Tomášková, Iveta RůžičkováJiří Wanner; Impact of treated wastewater on plant growth: leaf fluorescence, reflectance, and biomass-based assessment. Water Sci Technol 2024; wst2024097. doi: https://doi.org/10.2166/wst.2024.097

Ofori, S.; Abebrese, D.K.; Růžičková, I.; Wanner, J. Reuse of Treated Wastewater for Crop Irrigation: Water Suitability, Fertilization Potential, and Impact on Selected Soil Physicochemical PropertiesWater 2024, 16, 484.

Andreides, D., M. A. Lopez Marin and J. Zabranska (2024). "Selective syngas fermentation to acetate under acidic and psychrophilic conditions using mixed anaerobic culture." Bioresource Technology 394: 130235.

Dostálková, A., Zdeňková, K., Bartáčková, J., Čermáková, E., Kapisheva, M., Lopez Marin, M., Kouba, V., Sýkora, P., Chmel, M., Bartoš, O., Dresler, J., Demnerová, K., Rumlová, M. and Bartáček, J. (2024) Prevalence of SARS-CoV-2 variants in Prague wastewater determined by nanopore-based sequencing. Chemosphere accepted.

Ilic, A., Kouba, V., De Vrieze, J., Du Laing, G., Bartáček, J. 2024. Diffusive gradients in thin films (DGT) as a robust and reliable technique to measure bioavailable metals in digestates. Environmental Technology & Innovation accepted.

2023

Rutten, S., Ojobe, B., Hernandez Leal, L., de Grooth, J., Roesink, H.D.W., Bartáček, J. and Schmitt, H.  2023.  Evaluation of Membrane Integrity Monitoring Methods for Hollow Fiber Nanofiltration Membranes:  Applicability in Gray Water Reclamation Systems. ACS EST Water accepted.

Karmann, C., Mágrová, A., Jeníček, P., Bartáček, J. and Kouba, V.  2023.  Advances in nitrogen removal and recovery technologies from reject water: economic and environmental perspectives. Bioresour. Technol. accepted

Bartackova, J., Kouba, V., Dostalkova, A., Čermáková, E., Lopez Marin, M.A., Chmel, M., Milanová, M., Demnerová, K., Rumlová, M., Sýkora, P., Bartáček, J. and Zdeňková, K.  2023.  Monitoring of monkeypox viral DNA in Prague wastewater. Sci. Total Environ. accepted.

Lopez Marin, M. A., Zdenkova, K., Bartackova, J., Cermakova, E., Dostalkova, A., Demnerova, K., Vavruskova, L., Novakova, Z., Sykora, P., Rumlova, M. & Bartacek, J. (2023). Monitoring COVID-19 spread in selected Prague's schools based on the presence of SARS-CoV-2 RNA in wastewater. Science of The Total Environment, 871 161935.

Gajdoš, S., Zuzáková, J., Pacholská, T., Kužel, V., Karpíšek, I., Karmann, C., Šturmová, R., Bindzar, J., Smrčková, Š., Nováková, Z., Srb, M., Šmejkalová, P., Kok, D. and Kouba, V.  2023.  Synergistic removal of pharmaceuticals and antibiotic resistance from ultrafiltered WWTP effluent: free-floating ARGs exceptionally susceptible to degradation. Journal of Environmental Management accepted.

M. A. Lopez Marin,  J. Suman, K. Jani, P. Ulbrich, T. Cajthaml, A. Filipova, P. Pajer, M. Neumann-Schaal, M. Strejcek, O. Uhlik: Solicola gregarius gen. nov., sp. nov., a soil actinobacterium isolated after enhanced cultivation with Micrococcus luteus culture supernatant. International journal of systematic and evolutionary microbiology 73,  (2023).

2022

Mannina, G., A. Pandey and R. Sirohi (2022). Current Developments in Biotechnology and Bioengineering: Smart Solutions for Wastewater: Road-mapping the Transition to Circular Economy, Elsevier - Health Sciences Division. Kapitoly 10 (Water reuse in the frame of circular economy: Jiří Wanner, Martin Srb, Ondřej Beneš) a11 (Governance factors influencing the scope for circular water solutions: Sigrid Damman, Henrik Brynthe Lund, Tuukka Mäkitie, Giorgio Mannina, Gordon Akon-Yamga, Jiří Wanner)

Zdenkova, K., J. Bartackova, E. Cermakova, K. Demnerova, A. Dostalkova, V. Janda, J. Jarkovsky, M. A. Lopez Marin, Z. Novakova, M. Rumlova, J. R. Ambrozova, K. Skodakova, I. Swierczkova, P. Sykora, D. Vejmelkova, J. Wanner and J. Bartacek (2022). "Monitoring COVID-19 spread in Prague local neighborhoods based on the presence of SARS-CoV-2 RNA in wastewater collected throughout the sewer network." Water Research 216: 118343.

Andreides, M., P. Dolejš and J. Bartáček (2022). "The prediction of WWTP influent characteristics: Good practices and challenges." Journal of Water Process Engineering 49: 103009.

Solomon Ofori, Prince Chapman Agyeman, Enoch Kwasi Adotey, Iveta Růžičková, Jiří Wanner (2022). Assessing the influence of treated effluent on nutrient enrichment of surface waters using water quality indices and source apportionment. Water Practice & Technology. doi: 10.2166/wpt.2022.081
 
Agyeman, P. C., K. John, N. M. Kebonye, S. Ofori, L. Borůvka, R. Vašát and M. Kočárek (2022). "Ecological risk source distribution, uncertainty analysis, and application of geographically weighted regression cokriging for prediction of potentially toxic elements in agricultural soils." Process Safety and Environmental Protection 164: 729-746.
 
Kouba, V., Hůrková, K., Navrátilová, K., Vejmelková, D., Benáková, A., Laureni, M., Vodičková, P., Podzimek, T., Lipovová, P., van Niftrik, L., Hajšlová, J., van Loosdrecht, M.C.M., Weissbrodt, D.G. andBartacek, J.  2022.  On anammox activity at low temperature: effect of ladderane composition and process conditions Chem. Eng. J. accepted.
 
Andreides D., Pokorna D., Zabranska J. 2022. Assessing the syngas biomethanation in anaerobic sludge digestion under different syngas loading rates and homogenisation. Fuel, accepted
 

Kouba, V., Hurkova, K., Navratilova, K., Vejmelkova, D., Benakova, A., Laureni, M., Vodickova, P., Podzimek, T., Lipovova, P., van Niftrik, L., Hajslova, J., van Loosdrecht, M.C., Weissbrodt, D.G., Bartacek, J. 2022. Effect of temperature on the compositions of ladderane lipids in globally surveyed anammox populations. Science of the total environment, accepted.

Mireya Tapia-Salazar, Veronica R.Diaz-Sosa, Diana L.Cárdenas-Chávez(2022). "Toxicological effect and enzymatic disorder of non-studied emerging contaminants in Artemia salina model." Toxicology Reports 9: 210-218.

Kouba, V., Bachmannova, C., Podzimek, T., Lipovova, P., van Loosdrecht, M.C. 2022. Physiology of anammox adaptation to low temperatures and promising biomarkers: a review. Bioresour. Technol., Accepted.

Čiháková Pavlína, Zuzáková Jana, Říhová Ambrožová Jana, 2022: Využití nanočástic stříbra při úpravě, čištění a recyklaci vod. Chemické Listy 116 (2022), 119-128, ISSN 0009-2770. https://doi.org/10.54779/chl20220119

2021

Andreides, D., Fliegerova, K.O., Pokorna, D., Zabranska, J. 2021. Biological conversion of carbon monoxide and hydrogen by anaerobic culture: Prospect of combination anaerobic digestion and thermochemical processes. Biotechnol. Adv., 107886. https://doi.org/10.1016/j.biotechadv.2021.107886
 
K. Skleničková, M. Pečenka, J. Říhová Ambrožová, S. Abbrent, V. Vlčková, H. Beneš, M. Halecký, 2021: Influence of biodegradable polyurethane foam on biocoenosis and sludge activity in reactors simulating low-load wastewater treatments, Journal of Water Process Engineering, Volume 44 (2021) 102455, https://doi.org/10.1016/j.jwpe.2021.102455
 
Čiháková, P., Zuzáková, J. a Říhová Ambrožová, J. 2021. Potenciálně negativní dopad dlouhodobého používání nanočástic stříbra ve vodním hospodářství. Chemické listy. 115, 11 (lis. 2021), 588-594.
 
Kouba, V., Vejmelkova, D., Zwolsman, E., Hurkova, K., Navratilova, K., Laureni, M., Vodickova, P., Podzimek, T., Hajslova, J., Pabst, M., van Loosdrecht, M.C.M., Bartacek, J., Lipovova, P. and Weissbrodt, D.G.  2021.  Adaptation of anammox bacteria to low temperature via gradual acclimation and cold shocks: distinctions in protein expression, membrane composition, and activities. Water Research, accepted.
 
Iryna Lanko, Jakub Hejnic, Jana Říhová-Ambrožová, Ivet Ferrer, Pavel Jenicek (2021). "Digested Sludge Quality in Mesophilic, Thermophilic, and Temperature-Phased Anaerobic Digestion Systems." Water 13(20): 2839.
 
Andreides, M.; Pokorná-Krayzelová, L.; Bartáčková, J.; Bartáček, J., 2021. Stirring-based control strategy for microaerobic H2S removal in sequencing batch anaerobic digesters. Fuel 306. 10.1016/j.fuel.2021.121696
 
Paulu, A.; Bartáček, J.; Šerešová, M.; Kočí, V., 2021. Combining process modeling and LCA to assess the environmental impacts of wastewater treatment innovations. Water (Switzerland) 13(9). 10.3390/w13091246
 

B. Ojobe, R. Zouzelka, B. Satkova,  M. Vagnerova, A. Nemeskalova, M. Kuchar, J. Bartacek, J. Rathousky (2021): Photocatalytic Removal of Pharmaceuticals from Greywater. Catalyst 11 (9)

Keprtová K., Bindzar J. (2021): Čištění odpadních vod z výroby recyklovaného papíru. Chemické listy 115 (8). 

Kamila Zdenkova, Jana Bartackova, Eliska Cermakova, Katerina Demnerova, Alzbeta Dostalkova, Vaclav Janda, Zuzana Novakova, Michaela Rumlova, Jana Rihova Ambrozova, Klara Skodakova, Iva Swierczkova, Petr Sykora, Dana Vejmelkova, Jiri Wanner, Jan Bartacek (2021). "Monitoring COVID-19 spread in Prague local neighborhoods based on the presence of SARS-CoV-2 RNA in wastewater collected throughout the sewer network." medRxiv: 2021.2007.2028.21261272.

Vojtech Kouba, Juan Camilo Gerlein, Andrea Benakova, Marco Antonio Lopez Marin, Eva Rysava, Dana Vejmelkova & Jan Bartacek (2021) Adaptation of flocculent anammox culture to low temperature by cold shock: long-term response of the microbial population, Environmental Technology, DOI: 10.1080/09593330.2021.1950842

E. Ortiz-Ardila, B. Diez,  C. Celis, P. Jenicek and R. Labatut: Microaerobic conditions in anaerobic sludge promote changes in bacterial composition favoring biodegradation of polymeric siloxanes, Environmental Science: Processes & Impacts, 2021, DOI: 10.1039/D1EM00143D

Wanner, J., Rosický, J., Kovařík, J., Srb, M., Lánský, M., Sýkora, P. (2020). "Commissioning of the new water line of the Central wastewater treatment plant in Prague and its impact on the operation of the existing water line." Water Science and Technology 84(2): 293-301.

Wanner, J. (2021). "The development in biological wastewater treatment over the last 50 years." Water Science and Technology 84(2): 274-283.

J. Drechsler, J. Semerád, K. Fialová, M. Prokopová, T. Cajthaml, M. Pivokonský, V. Janda: Výskyt a odstraňování per- a polyfluorovaných organických látek při úpravě pitné vody. Chem. Listy 115, 291−294 (2021).

Skleničková Kateřina, Vlčková Věra, Abbrent Sabina, Bujok Sonia, Paruzel Aleksandra, Kaniszová Lívia, Trhlíková Olga, Říhová Ambrožová Jana, Halecký Martin, Beneš Hynek, 2021: Open-Cell Aliphatic Polyurethane Foams with High Content of Polysaccharides: Structure, Degradation, and Ecotoxicity, ACS Suistanable Chem. Eng., xxx, xxx-xxx, https://pubs.acs.org/doi/10.1021/acssuschemeng.1c01173

Edith Mawunya Kutorglo, Roman Elashnikov, Silvie Rimpelova, Pavel Ulbrich, Jana Říhová Ambrožová, Vaclav Svorcik, Oleksiy Lyutakov, 2021: Polypyrrole-Based Nanorobots Powered by Light and Glucose for Pollutant Degradation in WaterACS Appl. Mater. Interfaces 202113, 16173-16181DOI: https://pubs.acs.org/doi/10.1021/acsami.0c20055

Andreides, D.;  Bautista Quispe, J. I.;  Bartackova, J.;  Pokorna, D.; Zabranska, J., A novel two-stage process for biological conversion of syngas to biomethane. Bioresource Technology 2021, 327, 124811.

Andreides, D.;  Varga, Z.;  Pokorna, D.; Zabranska, J., Performance evaluation of sulfide-based autotrophic denitrification for petrochemical industry wastewater. Journal of Water Process Engineering 2020, 40, 101834.

Cai Z., Čadek D., Šmejkalová P., Kadeřábková A., Nová, M., Kuta A.: The Modification of Properties of Thermoplastic Starch Materials: Combining Potato Starch with Natural Rubber and Epoxidized Natural Rubber. Materials Today Communications 26, 2021, ISSN 2352-4928 https://doi.org/10.1016/j.mtcomm.2020.101912

Andreides M, Pokorná-Krayzelová L, Říhová Ambrožová J, Volcke EIP, Bartáček J. Key parameters influencing hydrogen sulfide removal in microaerobic sequencing batch reactor. Biochemical Engineering Journal. 2021;168.

Ofori, S., Puškáčová, A., Růžičková, I., Wanner, J.: Treated wastewater reuse for irrigation: Pros and cons. Science of The Total Environment, Volume 760, 15 March 2021, 144026. https://doi.org/10.1016/j.scitotenv.2020.144026

Fajnorová, S., Sprenger, Ch., Hermes, N., Ternes, T.A., Sala, L., Miehe, U., Drewes, J.E., and Hübner, U.: Assessment of Full-Scale Indirect Potable Water Reuse in El Port de la Selva, Spain. Water, 2021, Vol. 13, No.3, 325. https://doi.org/10.3390/w13030325

2020

Lanko, I., Flores, L., Garfí, M., Todt, V., Posada, J. A., Jenicek, P., & Ferrer, I. (2020). Life cycle assessment of the mesophilic, thermophilic, and temperature-phased anaerobic digestion of sewage sludge. Water12(11), 3140.

Andreides, M.; Pokorná-Krayzelová, L.; Bartáček, J.; Jeníček, P. Biological H2S removal from gasses. In Environmental Technologies to Treat Sulfur Pollution, 2nd ed.; Lens, P. N., , , Eds.; IWA Publishing: London, 2020; pp 345–365. (book chapter)

Tobo, Y. M.; Bartacek, J.; Nopens, I., Linking CFD and kinetic models in anaerobic digestion using a compartmental model approach. Process. 2020, 8 (6).

Tobo, Y. M.; Rehman, U.; Bartacek, J.; Nopens, I., Partial integration of ADM1 into CFD: Understanding the impact of diffusion on anaerobic digestion mixing. Water Sci. Technol. 2020, 81 (8), 1658-1667.

Valdés, F.; Camiloti, P. R.; Bartacek, J.; Torres-Aravena, Á.; Toledo-Alarcón, J.; Zaiat, M.; Jeison, D., Micro-oxygenation in up-flow anaerobic sludge bed (UASB) reactors using a silicon membrane for sulfide oxidation. Polym. 2020, 12 (9), 1-11.

Horová D., Bezucha P., Růžičková I. (2020) Effect of carbon source and nitrate concentration on denitrification of high-nitrate wastewater, Environment Protection Engineering, Vol. 46, 1, pp. 73 – 89. DOI: 10.37190/epe200106

Nováková Z .: Boron - an indicator of anthropogenic water pollution; Chemical Sheets, adopted under number 012/20, September 2020, ISSN: 0009-2770, Chemical Sheets

Maciej Białasek, Aleksandra Miłobędzka, 2020. Revealing antimicrobial resistance in stormwater with MinION, Chemosphere, Volume 258. https://doi.org/10.1016/j.chemosphere.2020.127392

Diaz-Sosa V.R., Tapia-Salazar M., Wanner J. and  Cradenas-Chavez D.L. 2020. Monitoring and Ecotoxicity Assessment of Emerging Contaminants in Wastewater Discharge in the City of Prague (Czech Republic). Water, 12(4), 1079.

Skleničková K., Koloušek D., Pečenka M., Vejmelková D., Šlouf M., Růžičková I. (2020) Application of zeolite filters in fish breeding recirculation systems and their effect on nitrifying bacteria, Aquaculture 516, 734605.

2019

Skleničková K., Koloušek D., Růžičková I., Šviráková E. (2019) Využití zeolitů při chovu ryb a jejich vliv na chemické a mikrobiologické aspekty vody, Chemické listy, 113, 12, 751 – 756.
Vojtiskova, M., Satkova, B., Bindzar, J., Jenicek, P. (2019): Simple improvement of digested sludge quality: is post-aeration the key? Water Science and Technology https://doi.org/10.2166/wst.2019.409

Dolejš, P., Varga, Z., Luza, B., Pícha, A., Jeníček, P., Bartáček. J. (2019). "Maximizing energy recovery from wastewater via bioflocculation-enhanced primary treatment: A pilot-scale study." Environmental Technology: 1-30.

Pokorna, D., Varga, Z., Zabranska, J.: Biomethanation of CO2 with electrolytic hydrogen by hydrogenotrophic methanogens (2019). New Biotechnology 44, 10.1016/j.nbt.2018.05.1048

Pokorna, D., Varga, Z., Andreides, D., Zabranska, J.: Adaptation of anaerobic culture to bioconversion of carbon dioxide with hydrogen to biomethane. Renewable Energy. 142, 167 – 172, 2019

Kouba, V., Svehla, P., Catrysse, M., Prochazkova, L., Radechovska, H., Jenicek, P. and Bartacek, J. (2019) How biomass growth mode affects ammonium oxidation start-up and NOB inhibition in the partial nitritation of cold and diluted reject water. Environmental Technology (United Kingdom) 40(6), 673-682.

Wyman, V., Serrano, A., Borja, R., Jiménez, A., Carvajal, A., Lenz, M., Bartacek, J. and Fermoso, F.G. (2019) Effects of barium on the pathways of anaerobic digestion. Journal of Environmental Management 232, 397-403.

2018

 Vital, B., Bartacek, J., Ortega-Bravo, J.C. and Jeison, D. (2018) Treatment of acid mine drainage by forward osmosis: Heavy metal rejection and reverse flux of draw solution constituents. Chemical Engineering Journal 332, 85-91.

Meier, L., Stará, D., Bartacek, J. and Jeison, D. (2018) Removal of H2S by a continuous microalgae-based photosynthetic biogas upgrading process. Process Safety and Environmental Protection 119, 65-68.

Pokorna-Krayzelova, L., Vejmelková, D., Selan, L., Jenicek, P., Volcke, E.I.P. and Bartacek, J. (2018) Final products and kinetics of biochemical and chemical sulfide oxidation under microaerobic conditions. Water Science and Technology 78(9), 1916-1924.

Pivokonsky, L. Cermakova, K. Novotna, P. Peer, T. Cajthaml, V. Janda: Occurrence of microplastics in raw and treated drinking water. Science of The Total Environment 643,1644-1651(2018).

Moeller, L., Zehnsdorf, A., Pokorná, D., Zábranská, J.: Foam formation in Anaerobic Digesters. Advances in Bioenergy, Vol. 3, 1 – 43,  Chapter 1, doi.org/10.1016/bs.aibe.2018.02.001, Elsevier 2018, ISSN 2468-0125, ISBN 978-0-12-815199-0

Kouba, V.; Darmal, R.; Vejmelkova, D.; Jenicek, P.; Bartacek, J., Cold shocks of anammox biofilm stimulate nitrogen removal at low temperatures. Biotechnology progress, 34(1), 277-281.

Camiloti, P.R., Valdés, F., Delforno, T.P., Bartacek, J., Zaiat, M., Jeison, D. 2018. A membrane aerated biofilm reactor for sulfide control from anaerobically treated wastewater. Environmental Technology (United Kingdom), 1-10.

Pokorna-Krayzelova L., Bartacek J., Theuri S.N., Segura Gonzales C.A., Prochazka J., Volcke E.I.P., Jenicek P. 2018: Microaeration through a biomembrane for biogas desulfurization: lab-scale and pilot-scale experiences. Environmental Science: Water Research & Technology. DOI: 10.1039/c8ew00232k

Dolejs P., El Tayar G., Vejmelkova D., Pecenka M., Polaskova M., Bartacek J. 2018: Psychrophilic anaerobic treatment of sewage: Biomethane potential, kinetics and importance of inoculum selection. Journal of Cleaner Production 199, 93-100, DOI: 10.1016/j.jclepro.2018.07.134

Hynek R., Kuckova S., Cejnar P., Junková P., Přikryl I., Říhová Ambrožová J. 2018: Identification of freshwater zooplankton species using protein profiling and principal component analysis, Limnol. Oceanogr.: Methods 16, 2018, 199-204, DOI: 10.1002/lom3.10238

Benáková, A., Johanidesová, I., Kelbich, P., Pospíšil, V., Wanner, J. (2018): The increase of process stability in removing ammonia nitrogen from wastewater. Water Science and Technology 77 (6), pp 1483-1492. Available Online 20 March 2018, wst2018135; DOI: 10.2166/wst.2018.135

Vojtěchovská Šrámková, M., et al. (2018). "Experimental verification of tertiary treatment process in achieving effluent quality required by wastewater reuse standards." Journal of Water Process Engineering 22: 41-45.

Zabranska J., Pokorna D.:  Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. 2018. Biotechnology Advances . DOI 10.1016/j.biotechadv.2017.12.003

2017

Wanner, J.; Ruzickova, I.; Benakova, A.: Filamentous microorganisms in activated sludge process. 2017. 6th International Symposium on Biosorption and Biodegradation /Bioremediation (BioBio) Location: Prague, Czech Republic. 25-29. 6. Pp: 55-59

Vanek T., Silva A., Halecky M., Paca J., Ruzickova I., Kozliak E., Jones K. (2017) Biodegradation of airborne acetone/styrene mixtures in a bubble column reactor. Journal of Environmental Science and Health, Part A-Toxic/Hazardous Substances and Environmental Engineering, 52, 9, 905-915. DOI:10.1080/10934529.2017.1318629

Pokorna, D.: Biogas desulfurization by autotrophic denitrification – temperature dependence. J.Fundam.Renewable Energy, 7-4 (Suppl), DOI:10.4172/2090-4541-C1-029, 2017

Zabranska, J.: Bioconversion of carbon dioxide in Biogas to methane. J.Fundam.Renewable Energy, 7-4 (Suppl), DOI:10.4172/2090-4541-C1-029, 2017

Capson-Tojo, G., Torres, A., Muñoz, R., Bartacek, J., Jeison, D. 2017 Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N. gaditana for methane production Renewable Energy 105, 539-546

Kouba, V., Svehla, P., Catrysse, M., Prochazkova, L., Hrncirova, H., Jenicek, P., Bartacek, J. 2017. How biomass growth mode affects ammonium oxidation start-up and NOB inhibition in partial nitritation of cold and diluted reject water. Environ Technol, ahead of print.

Kouba, V., Proksova E., Wiesinger H., Vejmelkova D., Bartacek, J. 2017. Good servant, bad master: Sulfide influence on partial nitritation of sewage. Water Sci Technol, ahead of print.

Kouba, V., Vejmelkova D., Proksova E., Wiesinger H., Concha M., Dolejs P., Hejnic J., Jenicek P., Bartacek, J. 2017. High-rate partial nitritation of municipal wastewater after psychrophilic anaerobic pre-treatment. Environ Sci Technol, ahead of print

Pokorná-Krayzelová, L., Bartáček, J., Vejmelkova, D., Alvarez, A.A., Slukova, P., Prochazka, J., Volcke, E.I.P., Jeníček, P. (2017) “The use of a silicone-based biomembrane for microaerobic H2S removal from biogas.” Separation and Purification Technology 189, pages 145-152. 

Pokorná-Krayzelová, L., Mampaey, K.E., Vannecke, T.P.W., Bartáček, J., Jeníček, P., Volcke, E.I.P. (2017) “Model-based optimization of microaeration for biogas desulfurization in UASB reactors.” Biochemical Engineering Journal 125, pages 171-179.

J. Stoulil, V. Nikendey, V. Sykora, K. Drabkova, J. Svadlena & P. Dvorak (2017) Anticorrosive zinc decanoate additive in acrylate varnish, Transactions of the IMF, 95:3, 173-176.

Naceradska J., Pivokonsky M., Pivokonska L., Baresova M., Henderson R.K., Zamyadi A., Janda V.: The impact of pre-oxidation with potassium permanganate on cyanobacterial organic matter removal by coagulation. Water Research 114 (2017) 42-49.

P. Jeníček, J. Horejš, L. Pokorná-Krayzelová, J. Bindzar, J. Bartáček. Simple biogas desulfurization by microaeration – Full scale experience. Anaerobe (In Press, Accepted Manuscript). DOI: http://dx.doi.org/10.1016/j.anaerobe.2017.01.002

Dolejs, P., Ozcan, O., Bair, R., Ariunbaatar, J., Bartacek, J., Lens, P.N.L., Yeh, D.H. 2017. Effect of psychrophilic temperature shocks on a gas-lift anaerobic membrane bioreactor (Gl-AnMBR) treating synthetic domestic wastewater. Journal of Water Process Engineering, 16, 108-114

Cermakova L., Kopecka I., Pivokonsky M., Pivokonska L., Janda V.: Removal of cyanobacterial amino acids in water treatment by activated carbon adsorption. Separation and Purification Technology 173 (2017) 330–338.


2016

Hollinger CH., ..., Jeníček P. a kol. (2016) Towards a standardization of biomethane potential tests. Water Science and Technology 74 (11), 2515-2522.

Pokorna D., Zabranska J., Malik S., Kas J. Effect of corn silage treatment with preservative and fungicide on biogas yield. New Biotechnology 335 (S1-S213),p.S87, 2016

Hejnic Jakub, Dolejs Petr, Kouba Vojtech, Prudilova Andrea, Widiayuningrum Patria and Bartacek Jan. Comparing Anaerobic Treatment of Sewage at 15 °C Using UASB Reactor and Anaerobic Membrane Bioreactor. Environmental Engineering Science. Volume 33, Number 11, doi: 10.1089/ees.2016.0163, ahead of print.

Dolejs Petr, Gotvald Robert, Velazquez Aida M.L., Hejnic Jakub, Jenicek Pavel, and Bartacek Jan. Contact Stabilization with Enhanced Accumulation Process for Energy Recovery from Sewage. Environmental Engineering Science. August 2016, ahead of print. doi:10.1089/ees.2016.0155.

Čermáková L., Pivokonská L., Kopecká I., Pivokonský M., Janda V. (2016): Vliv aminokyselin produkovaných fytoplanktonem na úpravu vody a jejich adsorpce na aktivním uhlí. Chem. Listy 110,6,418-423.

Zouzelka R., Cihakova P., Rihova Ambrozova J., Rathousky J. (2016): Combined biocidal action of silver nanoparticles and ions against Chlorococcales (Scenedesmus quadricauda, Chlorella vulgaris) and filamentous algae (Klebsormidium sp.). Environ Sci Pollut Res 23:8317–8326.

Kouba, V., Widiayuningrum, P., Chovancova, L., Jenicek, P., Bartacek, J. (2016). Applicability of one-stage partial nitritation and anammox in MBBR for anaerobically pre-treated municipal wastewater. Journal of Industrial Microbiology & Biotechnology.

Šmejkalová P., Kužníková V., Merna J., Hermanová S.: Anaerobic digestion of aliphatic polyesters. Water Science & Technology, 73 (10) 2386-2393; DOI: 10.2166/wst.2016.088 (2016).


2015

Krayzelova, L., Bartacek, J., Díaz, I., Jeison, D., Volcke, E.I.P., Jenicek, P. (2015). "Microaeration for hydrogen sulfide removal during anaerobic treatment: a review." Reviews in Environmental Science and Bio/Technology 14(4): 703-725.

Pokorna, D., Zabranska, J. (2015) Sulfur-oxidizing Bacteria in Environmental Technology, Biotechnology Advances, 33, pp. 1246-1259, doi 10.1016/j.biotechadv.2015.02.007

Pivokonsky, M., Naceradska, J., Brabenec, T., Novotna, K., Baresova, M., Janda, V.: The impact of interactions between algal organic matter and humic substances on coagulation. Water Research 84, 278-285 (2015).

Janda V., Kastl G., Pivokonský M., Jelínek L.: Oxyanionty halogenů v pitné vodě. Chem. Listy. 109(5), 360-363 (2015).

Pokorna D., Carceller J.M., Paclik L., Zabranska J.: Biogas Cleaning by Hydrogen Sulfide Scrubbing and Bio-oxidation of Captured Sulfides. Energy & Fuels (2015), DOI:10.1021/ef502804j

Dolejs P. , Paclik L., Maca J., Pokorna D., Zabranska J., Bartacek J.: Effect of S/N ratio on sulfide removal by autotrophic denitrification. Applied Microbiology and Biotechnology, Vol. 99, Is. 5, pp. 2383-92 , 2015.

L. Čermáková, L. Pivokonská, I. Kopecká, M. Pivokonský, V. Janda: Adsorpce peptidů produkovaných fytoplanktonem na aktivním uhlí. Chem. Listy 109(3), 176–179 (2015).

Hermanová, S.; Šmejkalová, P.; Merna, J.; Zarevúcka, M.: Biodegradation of waste PET based copolyesters in thermophilic anaerobic sludge, Polym. Degrad. Stabil., 2015, 111, 176-184.

Pacek, L., Svehla, P., Bartacek, J., Radechovsky, J., Hrncirova, H., Shejbalova, S., Balik, J., Jenicek, P. 2015. Direct and indirect effects of oxygen limitation on nitrification process applied to reject water treatment. Desalination and Water Treatment, 56(3), 598-607.

Svehla, P., Radechovsky, J., Hrncirova, H., Pacek, L., Bartacek, J. 2015. Effect of influent nitrogen concentration on feasibility of short-cut nitrification during wastewater treatment in activated sludge systems. Chemical Papers, 69(7), 921-929.

Podzimek, T., Bartacek, J. 2014. Použití jednobuněčných řas jako substrát pro výrobu bioplynu. Bioprospect, 24(4), 101 - 103.


2014

Smrčková, Š., Bindzar, J. 2014. Náhradní sladidla jako polutanty vody, Chemické listy, 108 (12), 1125-1132.

Krayzelova, L., Bartacek, J., Kolesarova, N., Jenicek, P. (2014). "Microaeration for hydrogen sulfide removal in UASB reactor." Bioresource Technology 172(0): 297-302. ISSN: 0960-8524

Dolejš, P., V. Poštulka, Z. Sedláková, V. Jandová, J. Vejražka, E. Esposito, J. C. Jansen and P. Izák (2014). "Simultaneous hydrogen sulphide and carbon dioxide removal from biogas by water–swollen reverse osmosis membrane." Separation and Purification Technology 131: 108-116.

Říhová Ambrožová, J., Adámková, P., Škopová, V., (2014) Fototrofní deteriogeny a jejich eliminace z povrchů nanočásticemi stříbra. Chemické listy 108 (v tisku)

Krayzelova, L., Lynn, T.J., Banihani, Q., Bartacek, J., Jenicek, P., Ergas, S.J. (2014). "A Tire-Sulfur Hybrid Adsorption Denitrification (T-SHAD) process for decentralized wastewater treatment." Water Research 61(0): 191-199. ISSN: 0043-1354.

F. Pudil, R. Uvira, V. Janda: Volatile compounds in Stinkhorn (Phallus Impudicus L.ex Pers.) at different stages of growth. European Scientific Journal 10,9,163-171(2014). ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431.

Gabarrón S., Gómez M., Dvořák L., Růžičková I., Rodriguez-Roda I., Comas J. (2014) Ragging in MBR: Effects of operational conditions, chemical cleaning and pre-treatment improvements. Separation Science and Technology, 49, 14, 2115-2123.

Jenicek, P., Celis, C.A., Krayzelova, L., Anferova N., Pokorna, D. (2014) Improving products of anaerobic sludge digestion by microaeration. Water Science & Technology, 69 (4) 803-809.

Kouba, V., Catrysse, M., Stryjova, H., Jonatova, I., Volcke, E.I.P., Svehla, P., Bartacek, J. 2014. The impact of influent total ammonium nitrogen concentration on nitrite-oxidizing bacteria inhibition in moving bed biofilm reactor. Water Science and Technology, 69(6), 1227-1233.

Svehla, P., Bartacek, J., Pacek, L., Hrncirova, H., Radechovsky, J., Hanc, A., Jenicek, P. 2014. Inhibition effect of free ammonia and free nitrous acid on nitrite-oxidising bacteria during sludge liquor treatment: Influence of feeding strategy. Chemical Papers, 68(7), 871-878.


2013

M. Zychova, M. Ruzickova, J. Macak, V. Janda: Properties and Application of Supercritical Water, Chem. Listy 107,126 (2013).

Jenicek, P., Kutil, J., Benes, O., Todt, V., Zabranska, J., Dohanyos, M., 2013. Energy self-sufficient sewage wastewater treatment plants: is optimized anaerobic sludge digestion the key? Water Science & Technology, 68 (8) 1739-1744.

Jenicek, P., Celis, C., Picha, A., Pokorna, D. (2013) Influence of Raw Sludge Quality on the Efficiency of Microaerobic Sulfide Removal during Anaerobic Digestion of Sewage Sludge; Journal of Residuals Science & Technology 10, 11-16.

Pokorna D., Maca J., Zabranska J., 2013. Combination of Hydrogen Sulphide Removal from Biogas and Nitrogen Removal from Wastewater. Journal of Residuals Science & Technology 10(1), 41-46.

Dvořák, L., Svojitka, J., Wanner, J., Wintgens, T. (2013) Nitrification performance in a membrane bioreactor treating industrial wastewater, Water Research 47 (13) , pp. 4412-4421.

Benakova, A., & Wanner, J. (2013) Application of fluorescence in situ hybridization for the study and characterization of nitrifying bacteria in nitrifying/denitrifying wastewater treatment plants. Environmental Technology, (ahead-of-print), 1-8

Poláková, E., Strnadová, N., Stryjová, H., Pečenka, M. 2013. Využití biologické nitrifikace pro odstranění amoniakálního dusíku z důlních vod, Chemické listy, 107 (5), 373-376.

Gabarrón S., Gómez M., Monclús H., Rodrigues-Roda I., Comas J. (2013) Ragging phenomenon characterisation and impact in a full-scale MBR, Water Science and Technology, 67, 4, 810 – 816.

Gómez M., Dvořák L., Růžičková I., Wanner J., Holba M., Sýkorová E. (2013) Influence of phosphorus precipitation on permeability and soluble microbial product concentration in a membrane bioreactor, Bioresource Technology, 129, 164 – 169.

Lukeš P., Člupek M., Babický V., Špetlíková E., Sisrová I., Maršálková E., Maršálek B. (2013) "High Power DC Diaphragm Discharge Excited in a Vapor Bubble for the Treatment of Water" Plasma Chem. Plasma Proc. 33 (1): 83-95.

Machala Z., Tarabová B., Hensel K., Špetlíková E., Šikurová L., Lukeš P. (2013) "Formation of ROS and RNS in Water Electro-Sprayed through Transient Spark Discharge in Air and their Bactericidal Effects" Plasma Proc. Polym. doi: 10.1002/ppap.201200113.

Ruma, Lukeš P., Aoki N., Špetlíková E., Hosseini S.H.R., Sakugawa T., Akiyama H. (2013) "Effects of Pulse Frequency of Input Power on the Physical and Chemical Properties of Pulsed Streamer Discharge Plasmas in Water" J. Phys. D: Appl. Phys. 46 (12): 125202.


2012

Bartacek, J., Fermoso, F.G., Vergeldt, F., Gerkema, E., Maca, J., Van As, H., Lens, P.N.L. 2012. The impact of metal transport processes on bioavailability of free and complex metal ions in methanogenic granular sludge. Water Science and Technology, 65(10), 1875-1881.

Dvořák, L., Gómez, M., Růžičková, I. 2012. Vliv provozních parametrů na koncentrace a složení mikrobiálních produktů aktivovaného kalu, Chemické listy, 106(2), 129-135.

Jenicek, P., Bartacek, J., Kutil, J., Zabranska, J., Dohanyos, M. 2012. Potentials and limits of anaerobic digestion of sewage sludge: Energy self- sufficient municipal wastewater treatment plant? Water Science and Technology, 66(6), 1277-1281.

Gómez, M., Dvořák, L., Růžičková, I., Holba, M., Wanner, J. 2012. Operational experience with a seasonally operated full-scale membrane bioreactor plant, Bioresource Technology, 121, 241 - 247

Holba, M., Plotěný, K., Dvořák, L., Gómez, M., Růžičková, I. 2012. Full-scale Applications of Membrane Filtration in Municipal Wastewater Treatment Plants. Clean - Soil, Air, Water, 40(5), 479-486.

Procházka, J., Dolejš, P., MácA, J., Dohányos, M. 2012. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen. Applied Microbiology and Biotechnology, 93(1), 439-447.

Procházka, J., Mrázek, J., Štrosová, L., Fliegerová, K., Zábranská, J., Dohányos, M. 2012. Enhanced biogas yield from energy crops with rumen anaerobic fungi. Engineering in Life Sciences, 12(3), 343-351.

Sorokin, D.Y., Lücker, S., Vejmelkova, D., Kostrikina, N.A., Kleerebezem, R., Rijpstra, W.I.C., Damsté, J.S.S., Le Paslier, D., Muyzer, G., Wagner, M., van Loosdrecht, M.C.M., Daims, H. 2012. Nitrification expanded: discovery, physiology and genomics of a nitrite-oxidizing bacterium from the phylum Chloroflexi. ISME Journal.

Thanh, D.N., Singh, M., Ulbrich, P., Štěpánek, F., Strnadová, N. 2012. As(V) removal from aqueous media using ±-MnO 2 nanorods-impregnated laterite composite adsorbents. Materials Research Bulletin, 47(1), 42-50.
Vacková, L., Stloukal, R., Wanner, J. 2012. Determination of low concentration of Paracoccus denitrificans encapsulated in polyvinyl alcohol LentiKat's pellets. Applied Microbiology and Biotechnology, 94(5), 1359-1364.

Vacková, L., Stloukal, R., Wanner, J. 2012. The possibility of using encapsulated nitrifiers for treatment of rejectwater coming fromanaerobic digestion. Water Science and Technology, 65(8), 1428-1434.

Vejmelkova, D., Sorokin, D.Y., Abbas, B., Kovaleva, O.L., Kleerebezem, R., Kampschreur, M.J., Muyzer, G., Van Loosdrecht, M.C.M. 2012. Analysis of ammonia-oxidizing bacteria dominating in lab-scale bioreactors with high ammonium bicarbonate loading. Applied Microbiology and Biotechnology, 93(1), 401-410.


2011

Dvořák, L., Gómez, M., Dvořáková, M., Růžičková, I., Wanner, J. 2011. The impact of different operating conditions on membrane fouling and EPS production. Bioresource Technology, 102(13), 6870-6875.

Dvorak, L., Gomez, M., Ruzickova. I. 2011. The study of membrane fouling in the view of operating conditions and parameters, Current Opinion in Biotechnology 22S, S15–S152.

Gomez, M., Dvorak, L., Ruzickova. I. 2011. Operating experiences with full-scale and pilot-scale membrane bioreactors (MBRs), Current Opinion in Biotechnology 22S, S15–S152.

Jenicek, P., Celis, C.A., Koubova, J., Pokorna, D. 2011a. Comparison of microbial activity in anaerobic and microaerobic digesters. Water Science and Technology, 63(10), 2244-2249.

Jenicek, P., Celis, C.A., Koubova, J., Ruzickova, I. 2011b. Change of the digested sludge quality at microaerobic digestion. Journal of Residuals Science and Technology, 8(2), 39-44.

Krýsa, J., Musilová, E., Zita, J. Critical assessment of suitable methods used for determination of antibacterial properties at photocatalytic surfaces. Journal of Hazardous materials.

Lukes, P., Clupek, M., Babicky, V., Sisrova, I., Janda, V. 2011. The catalytic role of tungsten electrode material in the plasmachemical activity of a pulsed corona discharge in water. Plasma Sources Science and Technology, 20(3).

Procházka J., Dolejš P., Máca J., Dohányos M. 2011. Stability and inhibition of anaerobic processes caused by insufficiency or excess of ammonia nitrogen, Appl Microbiol Biotechnol, DOI: 10.1007/s00253-011-3625-4.

Raposo, F., Fernández-Cegrí, V., de la Rubia, M.A., Borja, R., Béline, F., Cavinato, C., Demirer, G., Fernández, B., Fernández-Polanco, M., Frigon, J.C., Ganesh, R., Kaparaju, P., Koubova, J., Méndez, R., Menin, G., Peene, A., Scherer, P., Torrijos, M., Uellendahl, H., Wierinck, I., de Wilde, V. 2011. Biochemical methane potential (BMP) of solid organic substrates: Evaluation of anaerobic biodegradability using data from an international interlaboratory study. Journal of Chemical Technology and Biotechnology, 86(8), 1088-1098.

Vacková, L., Srb, M., Stloukal, R., Wanner, J. 2011. Comparison of denitrification at low temperature using encapsulated Paracoccus denitrificans, Pseudomonas fluorescens and mixed culture. Bioresource Technology, 102(7), 4661-4666.


2010

Ambrožová, J.R., Ríha, J., Hubácková, J., Ciháková, I. 2010. Risk analysis in drinking water accumulation. Czech Journal of Food Sciences, 28(6), 557 -563.

Bartacek, J., Fermoso, F.G., Catena, A.B., Lens, P.N.L. 2010a. Effect of sorption kinetics on nickel toxicity in methanogenic granular sludge. Journal of Hazardous materials, 180(1-3), 289-296.

Bartacek, J., Manconi, I., Sansone, G., Murgia, R., Lens, P.N.L. 2010b. Divalent metal addition restores sulfide-inhibited N2O reduction in Pseudomonas aeruginosa. Nitric Oxide - Biology and Chemistry, 23(2), 101-105.

Fermoso, F.G., Bartacek, J., Manzano, R., van Leeuwen, H.P., Lens, P.N.L. 2010a. Dosing of anaerobic granular sludge bioreactors with cobalt: Impact of cobalt retention on methanogenic activity. Bioresource Technology, 101(24), 9429-9437.

Fermoso, F.G., Bartacek, J., Lens, P.N.L. 2010b. Effect of vitamin B12 pulse addition on the performance of cobalt deprived anaerobic granular sludge bioreactors. Bioresource Technology, 101(14), 5201-5205.

Fliegerová K., Mrázek J., Hoffmann K., Zábranská J., Voigt K. 2010. Diversity of anaerobic fungi within cow manure determined by ITS1 analysis. Folia Microbiologica 55(4), 319-325.

Jenicek, P., Koubova, J., Bindzar, J., Zabranska, J. 2010. Advantages of anaerobic digestion of sludge in microaerobic conditions. Water Science and Technology, 62(2), 427-434.

Kennes, C., Lens, P., Bartacek, J. 2010. Air pollution control. Journal of Chemical Technology and Biotechnology, 85(3), 307-308.

Matura, M., Ettler, V., Ježek, J., Mihaljevič, M., Šebek, O., Sýkora, V., Klementová, M. 2010. Association of trace elements with colloidal fractions in leachates from closed and active municipal solid waste landfills. Journal of Hazardous materials, 183(1-3), 541-548.

Nabarlatz, D., Vondrysova, J., Jenicek, P., Stüber, F., Font, J., Fortuny, A., Fabregat, A., Bengoa, C. 2010. Hydrolytic enzymes in activated sludge: Extraction of protease and lipase by stirring and ultrasonication. Ultrasonics Sonochemistry, 17(5), 923-931.

Novotná Z., Procházka J., Šimůnek J., Fliegerová K., 2010. Xylanases of Anaerobic Fungus Anaeromyces mucronatus, Folia Microbiol. 55 (4), 363–367.

Pivokonský, M., Pivokonská, L., Bubáková, P., Janda, V. 2010. Treatment of water containing humic matter. Úprava vody s obsahem huminových látek, 104 (11), 1015-1022.

Raposo, F., Fernández-Cegrí, V., De la Rubia, M.A., Borja, R., Beltrán, J., Cavinato, C., Clinckspoor, M., Demirer, G., Diamadopoulos, E., Frigon, J.C., Koubova, J., Launay, M., Méndez, R., Menin, G., Noguerol, J., Uellehdahl, H., West, S. 2010. Quality improvement in determination of chemical oxygen demand in samples considered difficult to analyze, through participation in proficiency-testing schemes. TrAC - Trends in Analytical Chemistry, 29(9), 1082-1091.

Schenone, N. F., Vackova, L., Cirelli, A.F. 2010. Fish-farming water quality and environmental concerns in Argentina: a regional approach. Aquaculture International, 1-9.

Singh, M., Thanh, D.N., Ulbrich, P., Strnadová, N., Štěpánek, F. 2010. Synthesis, characterization and study of arsenate adsorption from aqueous solution by ±- And ´-phase manganese dioxide nanoadsorbents. Journal of Solid State Chemistry, 183(12), 2979-2986.

Švehla, P., Jeníček, P., Habart, J., Hanč, A., Balík, J. 2010. Testing selected factors influencing nitrification of sludge water. Testování vlivu vybraných faktorů na průběh nitrifikace kalové vody, Chemické listy 104(5), 343-348.


2009

Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., Van Lier, J.B. 2009. Defining the biomethane potential (BMP) of solid organic wastes and energy crops: A proposed protocol for batch assays, Vol. 59, pp. 927-934.

Bartacek, J., Vergeldt, F.J., Gerkema, E., Jenicek, P., Lens, P.N.L., Van As, H. 2009a. Magnetic resonance microscopy of iron transport in methanogenic granules. Journal of Magnetic Resonance, 200(2), 303-312.

Bartacek, J., Lens, P.N.L. 2009. Chalcogen cycle science and technology. Environmental Technology, 30(12), 1227.

Bartacek, J., Kennes, C., Lens, P.N.L. 2009b. Biotechniques for air pollution control (biotechniques 2009). Reviews in Environmental Science and Biotechnology, 8(4), 321-323.

Fermoso, F.G., Bartacek, J., Jansen, S., Lens, P.N.L. 2009. Metal supplementation to UASB bioreactors: from cell-metal interactions to full-scale application. Science of the Total Environment, 407(12), 3652-3667.

Pokorna, E., Postelmans, N., Jenicek, P., Schreurs, S., Carleer, R., Yperman, J. 2009. Study of bio-oils and solids from flash pyrolysis of sewage sludges. Fuel, 88(8), 1344-1350.

Raposo, F., de la Rubia, M.A., Borja, R., Alaiz, M., Beltrán, J., Cavinato, C., Clinckspoor, M., Demirer, G., Diamadopoulos, E., Helmreich, B., Jenicek, P., Martí, N., Méndez, R., Noguerol, J., Pereira, F., Picard, S., Torrijos, M. 2009. An interlaboratory study as useful tool for proficiency testing of chemical oxygen demand measurements using solid substrates and liquid samples with high suspended solid content. Talanta, 80(1), 329-337.

Rihova Ambrozova, J., Hubáčková, J., Čiháková, I.V.A. 2009. Drinking water quality in the czech republic. Czech Journal of Food Sciences, 27(2), 80- 87.


2008

Bartacek, J., Fermoso, F.G., Baldó-Urrutia, A.M., Van Hullebusch, E.D., Lens, P.N.L. 2008. Cobalt toxicity in anaerobic granular sludge: Influence of chemical speciation. Journal of Industrial Microbiology and Biotechnology, 35(11), 1465-1474.

Fermoso, F.G., Collins, G., Bartacek, J., Lens, P.N.L. 2008a. Zinc deprivation of methanol fed anaerobic granular sludge bioreactors. Journal of Industrial Microbiology and Biotechnology, 35(6), 543-557.

Fermoso, F.G., Bartacek, J., Chung, L.C., Lens, P. 2008b. Supplementation of cobalt to UASB reactors by pulse dosing: CoCl2 versus CoEDTA2- pulses. Biochemical Engineering Journal, 42(2), 111-119.

Fermoso, F.G., Collins, G., Bartacek, J., O'Flaherty, V., Lens, P. 2008c. Acidification of methanol-fed anaerobic granular sludge bioreactors by cobalt deprivation: Induction and microbial community dynamics. Biotechnology and Bioengineering, 99(1), 49-58.

Fermoso, F.G., Collins, G., Bartacek, J., O'Flaherty, V., Lens, P. 2008d. Role of nickel in high rate methanol degradation in anaerobic granular sludge bioreactors. Biodegradation, 19(5), 725-737.

Jobbágy, A., Tardy, G.M., Palkó, G., Benáková, A., Krhutková, O., Wanner, J. 2008. Savings with upgraded performance through improved activated sludge denitrification in the combined activated sludge-biofilter system of the Southpest Wastewater Treatment Plant, Vol. 57, pp. 1287-1293.

Nabarlatz, D., Vondrysova, J., Jenicek, P., Stber, F., Font, J., Fortuny, A., Fabregat, A., Bengoa, C. 2008. Extraction of enzymes from activated sludge. pp. 249-257.

Turečková, J., Prokopová, I., Niklová, P., Šimek, J.A.N., Šmejkalová, P., Keclík, F. 2008. Biodegradable copolyester/starch blends - Preparation, mechanical properties, wettability, biodegradation course. Polimery/Polymers, 53(9), 639-643.


2007

Bartacek, J., Zabranska, J., Lens, P.N.L. 2007. Developments and constraints in fermentative hydrogen production. Biofuels, Bioproducts and Biorefining, 1(3), 201-214.

Jiříček, M., Šráček, O., Janda, V. 2007. Removal of chloro derivatives of ethene from ground water with granulated-iron reaction barriers. Odstraňování chlorderivátů ethenu z podzemní vody využitím podpovrchových reakčních bariér tvořených granulovaným železem (Fe0), 101(2), 176-180.

Kragelund, C., Remesova, Z., Nielsen, J.L., Thomsen, T.R., Eales, K., Seviour, R., Wanner, J., Nielsen, P.H. 2007. Ecophysiology of mycolic acid- containing Actinobacteria (Mycolata) in activated sludge foams. FEMS Microbiology Ecology, 61(1), 174-184.

Kujalová, H., Sýkora, V., Pitter, P. 2007. Estrogenic substances in water. Látky s estrogenním účinkem ve vodách, 101(9), 706-711.

Rihova Ambrozova, J., Matulová, T. 2007. Biological surveying of cooling circuits. Biologické audity chladicích vod, 101(10), 816-820.

Rihova Ambrozova, J., Bezděková, E., Loučková, P., Nekovářová, J., Karásková, M., Rakušan, J., Černý, J., Kořínková, R. 2007. Utilization of environment-friendly phthalocyanine preparations for algae and cyanobacteria control in cooling water circuits. Využití ftalocyaninových preparátů šetrných k prostředí k ochraně okruhů chladicích vod před růstem řas a sinic, 101(4), 315-322.

Švehla, P., Jeníček, P., Habart, J., Hanč, A., Černý, J. 2007. The use of accumulation of nitrite in biological treatment of wastewater. Využití akumulace dusitanů při biologickém čištění odpadních vod, 101(10), 776-781.


2006

Boušková, A., Persson, E., La Cour Jansen, J., Dohányos, M. 2006. The effect of operational temperature on dewatering characteristics of digested sludge. Journal of Residuals Science and Technology, 3(1), 43-49.

Boušková, A., La Cour Jansen, J. 2006. Improvement of separation and dewatering of activated sludge by using enhanced biological removal process over chemical phosphorus precipitation. Journal of Residuals Science and Technology, 3(3), 145-151.

Jircek, M., Sracek, O., Janda, V. 2006. Removal of chlorinated solvents from carbonate-buffered water by zero-valent iron. Central European Journal of Chemistry, 5(1), 87-106.

Palatý, J., Burkhard, J., Koller, J., Bindzar, J., Kochánková, L. 2006. Biodegradation of polychlorinated biphenyls on soft coal slag. Acta Universitatis Carolinae, Environmentalica, 20(1-2), 101-108.

Raszka, A., Chorvatova, M., Wanner, J. 2006. The role and significance of extracellular polymers in activated sludge. Part I: Literature review. Acta Hydrochimica et Hydrobiologica, 34(5), 411-424.

Strnadová, N., Matějková, D. 2006. Adsorption of copper and zinc from aqueous solution on Mg(OH)2. Odstraňování sloučenin mědi a zinku z vod adsorpcí na hydroxidu hořečnatém, 100(9), 803-808.

Zábranská, J., Dohányos, M., Jeníček, P., Kutil, J. 2006. Disintegration of excess activated sludge - Evaluation and experience of full-scale applications, Vol. 53, pp. 229-236.


2005

Krhůtková, O., Denis, N., Wanner, J. 2005. Screening of filamentous microorganisms in activated sludge plants. Acta Hydrochimica et Hydrobiologica, 33(3), 270-274.

Lánský, M., Ružičková, I., Benáková, A., Wanner, J. 2005. Effect of coagulant dosing on physicochemical and microbiological characteristics of activated sludge and foam formation. Acta Hydrochimica et Hydrobiologica, 33(3), 266-269.

Maszenan, A.M., Seviour, R.J., Patel, B.K.C., Janssen, P.H., Wanner, J. 2005. Defluvicoccus vanus gen. nov., sp. nov., a novel Gram-negative coccus/coccobacillus in the 'Alphaproteobacteria' from activated sludge. International Journal of Systematic and Evolutionary Microbiology, 55(5), 2105-2111.

Ružičková, I., Remešová, Ž., Vanžurová, K. 2005. Biological foam control by chemical additives dosing - Part II: Biological and physicochemical aspects. Acta Hydrochimica et Hydrobiologica, 33(3), 262-265.


2002

Hladikova K., Ruzickova I., Klucova P., Wanner J. (2002) An investigation into studying of the activated sludge foaming potential by using physicochemical parameters, Wat. Sci. Technol., 46, 1 – 2, 525 – 528.

Krhutková O., Ruzicková I., Wanner J. (2002) Microbial evaluation of activated sludge and filamentous population at eight Czech nutrient removal activated sludge plants during year 2000, Wat. Sci. Technol., 46, 1 – 2, 471 – 478.


2001

Pitter, P., Sýkora, V. 2001. Biodegradability of ethylenediamine-based complexing agents and related compounds. Chemosphere, 44(4), 823-826.

Pitter, P. 2001. Amount concentrations in aquatic chemistry. Water Research, 35(8), 2092-2094.

Sýkora, V., Pitter, P., Bittnerová, I., Lederer, T. 2001. Biodegradability of ethylenediamine-based complexing agents. Water Research, 35(8), 2010- 2016.


2000

Dohányos, M., Zábranská, J., Jeníček, P., Štěpová, J., Kutil, V., Horejš, J. 2000. The intensification of sludge digestion by the disintegration of activated sludge and the thermal conditioning of digested sludge, Vol. 42, pp. 57-64.

Wanner J., Ruzickova I., Krhutkova O., Pribyl M. (2000) Activated sludge population dynamics and wastewater treatment plant design and operation, Wat. Sci. Technol., 41, 9, 217 – 225.

[urlnadstranka] => [poduzel] => Array ( ) [iduzel] => 18932 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/18932 [sablona] => stdClass Object ( [class] => stranka_ikona [html] => [css] => [js] => [autonomni] => 1 ) ) [18934] => stdClass Object ( [obsah] => [poduzel] => stdClass Object ( [40673] => stdClass Object ( [obsah] => [iduzel] => 40673 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/work-groups/40673 [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [18935] => stdClass Object ( [nazev] => Anaerobic Biotechnology [seo_title] => Anaerobic Biotechnology [seo_desc] => [autor] => [autor_email] => [perex] =>

Wastewater can be seen as a source of energy, valuable matter (nitrogen, phosphorus, heavy metals) or pure water. The energy of the organic compounds contained in wastewater and sewage sludges can be recycled using anaerobic technologies, i.e. anaerobic digestion (AD). Biogas (mixture of methane and carbon dioxide), which is the end product of anaerobic digestion, can be further utilized as a source of electricity and heat. The AD process is especially favorable for its low green house gasses production.

Work group Anaerobic Biotechnology deals with optimizing the AD processes and solving some specific problems inherent to AD such as removing (recycling) nitrogen and sulfur compounds released in the AD process. The work group aims to protect natural resources (clean water, fossil energy sources or atmosphere) through employing clean anaerobic technologies.

List of Publications

Projects and Grants

 

[ikona] => [obrazek] => P1110749.jpg [obsah] =>

Research areas

Energetically Self-sufficient Wastewater Treatment Plant

The work group Anaerobic Biotechnology has a long-term interest in anaerobic digestion of sewage sludges at wastewater treatment plants (WWTPs). The goal of this effort is energy recovery from sewage sludges in order to cover most of the energy consumption of the WWTP. As an example, the central WWTP in Prague is energetically self-sufficient by almost 90 %. This was achieved by introducing sludge disintegration in thickening centrifuges, introducing thermophilic AD process, improving mixing in digestors and intensive precipitation of the particulate organic matter contained in the incoming wastewater. Applying these measures, we achieved two-fold increase of biogas production at WWTP Prague.

Optimizing anaerobic fermentation of lignocellulosic materials by using anaerobic fungi

The numbers of biogas stations have recently been quickly rising throughout the Europe. In these biogas stations, energy crops, agricultural wastes and other types of organic wastes are transformed to biogas - an alternative source of green energy. Unfortunately, lignocellulosic material (plants and their debris) treated in the biogas stations is not readily degradable: only 40–60 % of the total organic matter can be transformed to methane in the classical AD process. This problem can be solved using anaerobic fungi capable of degradation of cellulosic materials. In nature, these microorganisms occur in rumens of ruminants such as cow or deer, where they help these animals to degrade lignocellulosics. By introducing anaerobic fungi into anaerobic digesters, methane production of the biogas plants can increase by up to 20 %.

H2S removal from biogas

H2S is source SO2 emissions, odour problems and operational problems during burning biogas in cogeneration units. Therefore, it is crucial to remove H2S from biogas. Biological methods for H2S removal from biogas are based on H2S oxidation to elemental sulphur by chemolithotrophic bacteria:

H2S + 0.5O2 --> S0 + H2O

This process can take place in external bioreactor following H2S scrubbing from biogas. It can also be induced inside the anaerobic reactor by introducing small amount of oxygen – so called “microaeration”. Both processes are efficient and our results have shown that microaeration has additional positive effects on the AD process such as better hydrolysis of organic compounds. In general, biological methods for H2S removal are always cheaper and simpler than physical-chemical H2S removal.

Nitrogen removal from liquid effluents from anaerobic digesters

The effluents from anaerobic digesters often contain high loads of ammonium nitrogen. At high concentration, ammonium nitrogen can inhibit the anaerobic digestion (AD) process and, when treated at WWTP, it considerably increases the nitrogen load at the WWTP. Compared to the common nitrification/denitrification process, the nitritation/denitritation process can significantly decrease the consumption of oxygen (by 25 %) and organic substrate (by 40 %) needed for ammonium removal from the liquid phase. Therefore it is intensively studied at our work group. Next to this, we also study methods for nitrogen removal directly from the anaerobic digester, e.g. by sorption on zeolites.

[iduzel] => 18935 [canonical_url] => [skupina_www] => Array ( ) [url] => /anaerobic-technology [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [18936] => stdClass Object ( [nazev] => Biological Treatment [seo_title] => Biological Treatment [seo_desc] => [autor] => [autor_email] => [perex] =>

The research group called Biological Wastewater Treatment primarily focuses on a large variety of topics related to municipal waste water treatment plants. It deals with the issues of nutrient removal, particularly nitrogen and phosphorus, including various ways of bio-augmentation.


An important part of the work consists in sludge analyses mainly with respect to separation properties of the sludge and the presence of specific metabolic groups of organisms. This also involves molecular biology methods such as FISH or PCR-DGGE. 


The group also engages in forming mathematical models for wastewater treatment plants and proposing optimisation of their management and operation.

[ikona] => [obrazek] => a%20%2818%29.jpg [obsah] => [iduzel] => 18936 [canonical_url] => //tvp.vscht.cz/research/18934/biological-treatment [skupina_www] => Array ( ) [url] => /research/work-groups/biological-treatment [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [18938] => stdClass Object ( [nazev] => Hydrobiology and Microbiology [seo_title] => Hydrobiology and Microbiology [seo_desc] => [autor] => [autor_email] => [perex] =>

Hydrobiology and microbiology are significant in: assessing the ecological state of steady and running waters, studying eutrophication and acidification, evaluating the state and efficiency of water management and treatment technologies as well as for operations with cooling water.


Microorganisms can indicate both the processes that are in progress and the efficient technological conditions or status but they can also be used for biotechnological purposes. Selected microorganisms are even used in laboratories or semi-operations to detect the efficiency of newly introduced materials, agents and intermediates.


In this respect, biology mainly focuses on applying theoretical knowledge and its utilization to indicate the status of processes. Results of biological analyses should enable a technologist to draw relevant conclusions and take effective measures. What is also important is the legislative framework where the knowledge from biological fields is implemented. The future of biology lies in the application of molecular biology methods (PCR, DGGE etc.). All the methods are applicable both in teaching and laboratory practice. Another advantage is the connection of undemanding microscopic methods with cultivation methods and the methods carried out on a purely molecular-biological material.

[ikona] => [obrazek] => 0002~~O9KTWpR3eK9CQX5JfnZ8VmpVvCkA.jpg [ogobrazek] => [pozadi] => [obsah] =>

Effects on microclimate, air quality, water and soil ecosystems within the scope of hydric recultivation of brown coal mines.

Extensive hydric recultivation, flooding the residual pit of the Most – Ležáky quarry executed within the scope of revitalising the area affected by mining will significantly improve the countryside characteristics north of the Most city. The aim to recultivate brown coal mines is a subject to the assessment of environmental impacts (EIA). The objective of this assessment is to identify, describe and evaluate the expected effects of the projects being prepared (buildings, activities and technologies). The result of the project will consist of the complex methodology quantifying environmental impacts of brown coal mines recultivation. In accordance with the framework regulation for water management 2000/60/ES the assessment of the local environmental status is performed mainly on the basis of water and periphyton samples (the main components being plankton and benthos).

Importance of drinking water quality degradation occurring in its transport and accumulation

Drinking water will be safe in the whole supply system only if contamination of water resources is prevented, water is treated sufficiently (the pollutants present are removed completely or partially to comply with requirements for quality and safety of drinking water) and also the secondary contamination is prevented during drinking water accumulation and distribution and operations with it. Water tanks and towers as buildings cannot be substituted in the water supply system and they also largely contribute to the reliability of the system, its maintainability or vulnerability. These buildings are strategically significant and can influence the water quality. Their location also greatly affects economical costs of the water supply system and its operation.


Aspects for assessing the impact of water tanks on the quality of the water supplied were solved to define both external and internal factors which crucially influence the water quality and its stability in accumulation tanks as well as in the distribution network. There were identified different levels of importance of partial causes affecting the quality of treated, accumulated and transported drinking water, which was a significant step allowing us to focus on the most effective methods minimizing the formation of biofilms, present biological life in water tanks and towers and to specify the rules for exchange of water in accumulation tanks. A prototype of a filtration device was developed to be placed into venting shafts in water tanks. Technical directive I-D-48 Construction arrangement, operation and maintenance of water tanks was prepared during the project solution and it became the basis for the efficiency verification of the directive of ČSN 73 6650 Water tanks, which applies to the design and operation of water tanks (both of the ground and tower types, which are the components of the water network supplying the public with drinking water).


Currently, the issues related to biologically stable drinking water are being researched further in accordance with Plans for Drinking Water Safe Supply (Water Safety Plans) and hazard analysis (HACCP).

Research of nanosurfaces

This workplace belongs to the NANOPIN research centre. In its biological section it implements the methods testing material surface properties (applied on glass, fabrics, pipelines in contact with water). Currently, a directive is being prepared dealing with testing the antibacterial properties of nanosurfaces. Simple methods testing material surface properties will be then put into practice.
Tested materials will also include filtration materials that are expected to become a part of filters used in water treatment operations.

New materials and technologies for material conservation of historical monuments and preventive monument care.

The project goal is to develop new materials and technologies and to verify their functionality for the following purposes: efficient but gentle removal of unwanted secondary layers from material surfaces, mainly the layers of oils and polymers; consolidation of construction monuments damaged by weathering and impregnating the porous inorganic substrate with innovated solidifying materials; preventive protection of materials forming the monument surface against weathering effects, namely water, and against biodegradation by applying new hydrophobic and biocidic agents. Newly developed materials and technologies will focus on the increased efficiency and care of applications with regard to the materials treated and the environment, prolonged lifetime, reversibility and the quality of processes comprising monument preventive, restoration and conservation actions. The development stage is to implement new knowledge from the basic material research, mainly nanomaterials and nanotechnologies including their combinations with traditional materials and methods. The research focuses on solving the tasks of the topical priority Materials and technologies for protection and preservation of cultural heritage of the NAKI Program.

[urlnadstranka] => [iduzel] => 18938 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/work-groups/hydrobiology-microbiology [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [18940] => stdClass Object ( [nazev] => Hydrochemistry and Water Treatment [seo_title] => Hydrochemistry and Water Treatment [seo_desc] => [autor] => [autor_email] => [perex] =>

The water cycle in nature can be influenced by
he can never control it, but he must always protect it ...


Drinking water occupies a privileged position among the foodstuffs that a person needs for his life. For this reason, it is necessary to pay increased attention to its quality. In simple terms, we could understand this only in relation to the production of drinking water, ie the individual technological steps and procedures that are used in its production and should provide high-quality drinking water with an optimal composition. In relation to the quality of drinking water required by the consumer, however, this issue moves to a much broader level, starting with the protection of water resources, continuing our own technology of drinking water production, but also its distribution to the consumer. Only by controlled professional intervention in these three areas can the desired goal be achieved - quality drinking water. All these areas are the subject of the focus of our working group.

[ikona] => [obrazek] => P1110721.jpg [ogobrazek] => [pozadi] => [obsah] =>

Hydrochemistry

The chemical behavior of inorganic substances and new PPCPs depends on their chemical structure. A common type of water analysis usually determined the total concentration of individual components. In fact, the individual components occur in various forms of existence (species), which result from protolytic, complex-forming, oxidation-reduction, polymerizing, and biodegrading reactions. It is difficult to determine the individual forms experimentally and so they are frequently calculated on the basis of chemical thermodynamics laws. For this purpose, a range of calculation programs already exists.

Hydroanalytics

Development and extended applications of various new PPCPs require the preparation of suitable analytical methods for their identification and quantification. Among the methods, applicable belong particularly the methods of instrumental analysis allowing detection of the presence of the PPCPs selected even at nanogram concentrations. Attention is primarily paid to selected medicaments, cosmetic preparations, and surfactants. The researchers closely cooperate with the Czech Office for Standards, Metrology, and Testing (ÚNMZ) in creating new regulations ÈSN. They also deal with the assessment and adaptation of new hydro-analytical directives ISO and EN.

Treatment technologies

The main attention is paid to the basic treatment processes of both surface and groundwater. In this context, for example, the optimization of coagulation test conditions is solved in order to obtain both high-quality treated water and a well-separable suspension. In the case of groundwater, it is primarily a solution of the calcium-carbonate balance, which is the dominant balance in the de-acidification, de-ironing, and de-manganization of these waters.

Ion exchange, sorption, and membrane processes

These methods are used for selective and non-selective removal of ions/solutes from water. Particularly attractive is the selective removal of heavy metals from water using ion exchange technologies, the removal of arsenic using inorganic sorbents, or the removal of trace concentrations of organic substances (see below). Membrane technologies can be used not only for the treatment of drinking water but also for the treatment of some types of wastewater.

Modern oxidation processes

The so-called Advanced Oxidation Processes (AOPs) have demonstrated considerable potential in removing difficult-to-biodegrade pollutants from wastewater. Their common denominator is the course at normal temperatures and pressures, and especially the use of extraordinary reactivity of hydroxyl radicals. At present, we are mainly dealing with processes based on the use of ozone and hydrogen peroxide. The main research topics include the possibilities of using AOPs for the removal of nitrogen compounds, with emphasis on the possibility of oxidation of ammoniacal nitrogen to gaseous nitrogen or increasing the biological cleanability of industrial wastewater.

Micropollutants

The issue of water treatment has recently shifted to the field of micro-pollution of water resources, especially metabolites of pesticides, or drug residues, and ATB resistance genes. We deal with the influence of advanced oxidation processes and sorption on various types of materials to remove these substances. By using sorption or precipitation processes, we also solve the removal of heavy metals, we also pay attention to the issue of microplastics.

Biological stability of drinking water

In real distribution systems, we can often notice the presence of residual organic substances after treatment processes designed to reduce the content of organic carbon in water, which is the reason for increasing the production of organic matter, biofilm, which covers the inner walls of pipes or parts of technology. One of the chemical-biochemical methods that evaluate or, as a result, predict the deterioration of drinking water quality is the determination of the BDOC (biodegradable dissolved organic carbon) indicator. The work of the working group is also focused on this method of evaluating the biological stability of water.

Recycling and reuse of treated wastewater

The Group participates in solving the topic of recycling and reuse of treated (urban) wastewater, where it is possible to replace the drinking water used so far with this water. This is mainly water for irrigation in agriculture, lawns of sports facilities (golf, football), urban greenery, or utility water to maintain the cleanliness of cities and towns. The economic intention is to produce service water that is cheaper than drinking water used for these purposes, while at the same time using water resources sparingly. The project of recycling and reuse of treated wastewater combines two relatively different topics of water technology: water treatment and wastewater treatment.

Monitoring the quality of watercourses and rainwater

We have been monitoring the quality of the upper reaches of the Krkonoše rivers for a long time, especially the Elbe, Úpa, Jizera, and Jizerka. At the same time, the quality of rainwater in the area of Luční hora - Strážné is also evaluated. Sampling is performed directly in the flow of the mentioned rivers and flows are measured using a magnetic induction flow meter in order to evaluate the mass balances of the monitored indicators.


Our workplace provides:

  • Abbreviated analysis of drinking water according to Decree No. 252/2004 Coll. as amended
  • Analysis of pool water according to Decree No. 238/2011 Coll. as amended
  • Analyzes of water from heating systems, including evaluation of aggressive or incrusting properties according to TNV 75 71 21
  • Determination of metals by AAS method with flame and electrothermal atomization
  • Determination of TOC, DOC and NPOC in waters according to ČSN EN 1484
  • Determination of BDOC (biodegradable dissolved organic carbon) in aqueous samples
  • Determination of TOC in solid samples according to ČSN EN 13 137
  • Coagulation tests in order to determine the optimal process conditions
  • Aggregation tests in order to determine the proportion of particle size in the treated sample and to optimize the formation of suspension and mixing with respect to the following separation processes
  • Leachate tests of solid materials related to Decree No. 387/2016 Coll.
  • Sorption tests focused on the kinetics of the process, including the determination of the sorption capacity of the respective sorbent in a statistical and dynamic arrangement
  • Determination of adsorbable organically bound halogens (AOX) in solid and liquid samples
  • Determination of extractable organically bound halogens (EOX) in solid samples
  • Tests of wastewater oxidation by ozonation, Fenton reaction, and their modifications, aimed at determining the efficiency of the process and its optimization
  • Tests of anaerobic biodegradability of organic substances (including plastics) according to ČSN EN ISO 11734, ČSN EN ISO 14853
  • design of technology for the elimination of micropollutants (drugs, pesticides, ATB resistance genes, etc.) into drinking and wastewater
     

    For more information contact:

Nina StrnadovaAlena Honova, či Pavla Šmejkalova

[urlnadstranka] => [iduzel] => 18940 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/work-groups/hup [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) [46596] => stdClass Object ( [nazev] => Demnerova Group [seo_title] => Demnerova Group [seo_desc] => [autor] => [autor_email] => [obsah] => [urlnadstranka] => [obrazek] => [pozadi] => [iduzel] => 46596 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/work-groups/demnerova-group [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) ) [iduzel] => 18934 [canonical_url] => //tvp.vscht.cz/research/work-groups [skupina_www] => Array ( ) [url] => /research/work-groups [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) [40706] => stdClass Object ( [nazev] => Equipment [seo_title] => Equipment [seo_desc] => [autor] => [autor_email] => [obsah] => [poduzel] => stdClass Object ( [40708] => stdClass Object ( [obsah] => [iduzel] => 40708 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/40706/40708 [sablona] => stdClass Object ( [class] => api_html [html] => [css] => [js] => [autonomni] => 1 ) ) [40709] => stdClass Object ( [nazev] => Sludge and solids analyses [seo_title] => Sludge and solids analyses [seo_desc] => [autor] => [autor_email] => [obsah] =>
 

Gas chromatograph GC 8000 TOP with TCD detector

Contact: Dr. Jana Bartáčková

b jana.bartackova@vscht.cz  e 220 44 4374

 

  • Fill column for the determination of elemental gases (oxygen, nitrogen, hydrogen), carbon dioxide and methane

 

Gas chromatograph GC SHIMADZU 2014 with FID detector

Contact: Dr. Jana Bartáčková

b jana.bartackova@vscht.cz  e 220 44 4374

 

  • Analysis of low fatty acids of C2-C6 organic matter
 

Rheometer RC 20

Contact: Dr. Aleš Pícha

b ales.picha@vscht.cz  e 220 44 3157

 

  • The device allows the measurement of viscosity of Newtonian fluids, the recording of flow curves as well as the determination of non-Newtonian fluids in the stationary shear flow.
  • It is possible to use a coaxial cylinder measuring system or a plate/plate system.
 

Christ Alpha 1-4 with driving module LDC-1M

Contact: Assoc. Prof. Vladimír Sýkora

b vladimir.sykora@vscht.cz  e 220 44 3229

 

  • Lyophilization device
  • Drying of substances by freezing
 

LTX 2000 - LABTECH s.r.o., Czech Rep.

Contact: Dr. Jan Bindzar

b jan.bindzar@vscht.cz  e 220 44 5125

 

  • Group determination of organic halogenated substances
  • Determination of adsorbable organically bound halogens (AOX) in both solid and liquid samples
  • Determination of extractable organically bound halogens (EOX) in solid samples
  • Determination of adsorbable organic bound iodine (AOI) in both solid and liquid samples
[iduzel] => 40709 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/40706/40709 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [40715] => stdClass Object ( [nazev] => Microbiological analyses of water [seo_title] => Microbiological analyses of water [seo_desc] => [autor] => [autor_email] => [obsah] =>
 

Set for the determination of chlorophyll-a concentration 

Contact: Assoc. Prof. Jana Říhová Ambrožová

b jana.ambrozova@vscht.cz  e 220 44 5123

 

  • Filtration device with rotary oil pump VR 1,5-12, oil separator FORE2 / 5, Memmert WB 7 water bath with thermal regulation and tube carrier, glass fiber filters GF6, centrifuge, spectrophotometer

 

Microscope LAMBDA DN 45, microscope Olympus CX 41

Contact: Assoc. Prof. Jana Říhová Ambrožová

b jana.ambrozova@vscht.cz  e 220 44 5123

  • Biological and laboratory optical microscope for subjective and objective observation in natural light, suitable for observation of wet and dry preparations (water, sludge, sediments), lighting system according to Köhler principle, lenses and eyepieces DIN standard, maximum 1500 × magnification, TH trinocular head with camcorder and screen connectivity, RCH relief contrast, photo attachment
  • CX-RFA-2 fluorescence device with the option of placing a green and blue filter cube with a lamp for the extension and a U-RFLT-50 power supply (100W mercury lamp)
 

PCR Device (Polymerase Chain Reaction) - PCR - Biometra T-personal Termocykler

Contact: Assoc. Prof. Jana Říhová Ambrožová

b jana.ambrozova@vscht.cz  e 220 44 5123

  • MIKRO 20 Hettich Centrifuge, HORIZON 58 Horizontal Electrophoresis (4-360 mA, 0.5 Amax), Reax Control Shaker, Cyclrometer Biometra T personal Schoeller, Block Thermostat, Transiluminator
 

Instrumentation equipment for microbiological analyzes

Contact: Assoc. Prof. Jana Říhová Ambrožová

b jana.ambrozova@vscht.cz  e 220 44 5123

  • Cultivation boxes with temperature from 10 to 60 ° C and equipment for the determination of basic microbiological indicators of different water types according to the valid standards ČSN ISO
[iduzel] => 40715 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/40706/40715 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [40714] => stdClass Object ( [nazev] => Respirometry [seo_title] => Respirometry [seo_desc] => [autor] => [autor_email] => [obsah] =>
 IMG_5943 (šířka 215px)

Apparatus for respirometric measurements

Contact: Dr. Martin Pečenka

b martin.pecenka@vscht.cz  e 220 44 3174

 

  • Determination of biochemical degradability of organic substances, fractionation of organic pollution
  • Determination of AK and OV parameters for creation of mathematical models of WWTP
  • Inhibition of nitrification

[iduzel] => 40714 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/40706/40714 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [40712] => stdClass Object ( [nazev] => Microbiological analyses of sludge [seo_title] => Microbiological analyses of sludge [seo_desc] => [autor] => [autor_email] => [obsah] =>
Epifluorescencni mikroskop (šířka 215px)

Olympus BH2-RFCA Epifluorescence Microscope

Contact: Dr. Iveta Růžičková

b iveta.ruzickova@vscht.cz  e 220 44 3150

 

  • Analysis in direct light and phase contrast (125x - 1250x), fluorescence, photographic extension

 

Epifluorescencni mikroskop 2 (šířka 215px)

Olympus BX51 Epifluorescence Microscope

Contact: Dr. Iveta Růžičková

b iveta.ruzickova@vscht.cz  e 220 44 3150

 

  • Analysis in direct light and phase contrast (100x - 1600x), fluorescence, CCD camera, photographic extension
  • The device is equipped with a black and white CCD camera for fluorescence signal recording and a camera to capture native and colored samples.  
 

LAMBDA DN 45 Microscope, Olympus CX 41 Microscope

Contact: Assoc Prof. Jana Říhová Ambrožová

b jana.ambrozova@vscht.cz  e 220 44 5123

  • Biological and laboratory optical microscope for subjective and objective observation in natural light, suitable for observation of wet and dry preparations (water, sludge, sediments), lighting system according to Köhler principle, lenses and eyepieces DIN standard, maximum 1500 × magnification, TH trinocular head with camcorder and screen connectivity, RCH relief contrast, photo attachment
  • CX-RFA-2 fluorescence device with the option of placing a green and blue filter cube with a lamp for the extension and a U-RFLT-50 power supply (100W mercury lamp)
 

PCR Device (Polymerase Chain Reaction) - PCR - Biometra T-personal Termocykler

Contact: Assoc Prof. Jana Říhová Ambrožová

b jana.ambrozova@vscht.cz  e 220 44 5123

  • MIKRO 20 Hettich Centrifuge, HORIZON 58 Horizontal Electrophoresis (4-360 mA, 0.5 Amax), Reax Control Shaker, Cyclrometer Biometra T personal Schoeller, Block Thermostat, Transiluminator
[iduzel] => 40712 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/40706/40712 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [40711] => stdClass Object ( [nazev] => Chemical analyses of water [seo_title] => Chemical analyses of water [seo_desc] => [autor] => [autor_email] => [obsah] =>
 

Isotachophoresis ITP / CZE-IONOSEP 2005 with additional UV / VIS detector ECD 2000

Contact: Dr. Jana Bartáčková

b jana.bartackova@vscht.cz  e 220 44 4374

 

  • Determination of anions and cations in water

 

Gas chromatograph FISONS  GC 8130 with FID

Contact: Dr. Dana Pokorná

b dana.pokorna@vscht.cz  e 220 44 3151

 

  • Determination of lower fatty acids - acetic, propionic, isobutyric, butyric, isovaleric, valeric, caproic - in water
 

Gas chromatograph HP 5890 with FID and ECD - Hewlett-Packard, USA

Contact: Prof. Václav Janda

b vaclav.janda@vscht.cz  e 220 44 3145

 

  • Analysis of volatile organic compounds
 

Gas chromatograph-mass spectrometer Fisons GC 8000 / MD 800, GB

Contact: Prof. Václav Janda

b vaclav.janda@vscht.cz  e 220 44 3145

 

  • Identification and analysis of volatile organic compounds
 

Gas chromatograph GC SHIMADZU 2010 with FID detector 

Contact: Dr. Jana Bartáčková

b jana.bartackova@vscht.cz  e 220 44 4374

 

  • Determination of NEL and aliphatic uhlovodíků
 

Agilent Infinity 1290 / 1290II Chromatography System with DAD Detection and MS Agilent 6460 Type QqQ (ESI)

Contact: Dr. Štěpánka Smrčková

b stepanka.smrckova@vscht.cz  e 220 44 5215

 

  • Quantitative determination of organic substances
 

HP 1050 high performance liquid chromatograph with multiply wavelength and fluorescence detector, HP, USA

Contact: Prof. Václav Janda

b vaclav.janda@vscht.cz  e 220 44 3145

 

  • Analysis of organic matter
 

AAS-908 AA - GBC, Australia

Contact: Assoc. Prof. Nina Strnadová

b nina.strnadova@vscht.cz  e 220 44 3148

 

  • Atomic Absorption Spectroscopy (atomisation and flame atomization)
 

UV/VIS-916 Spektrophotometer - GBC, Australia

Contact: Assoc. Prof. Nina Strnadová

b nina.strnadova@vscht.cz  e 220 44 3148

 

  • Spectrophotometric analysis in the range of 200 - 900 nm, manual and automatic spectral time scan
 

Spectrophotometer UV-1700PhamaSpec SHIMADZU

Contact: Assoc. Prof. Jana Říhová Ambrožová

b jana.ambrozova@vscht.cz  e 220 44 5123

 

  • Working range of wavelengths 1100 nm to 190 nm, possibility of connection to PC and printer, cuvette extension (1 and 5 cm glass and quartz cuvettes)
 

Apparatus for separating nonionic surfactants

Contact: Assoc. Prof. Ing. Vladimír Sýkora

b vladimir.sykora@vscht.cz  e 220 44 3229

 

  • Determination of non-ionic surfactants according to ČSN ISO 7875-2 (separation of surfactants by sublatations prior to their own analysis)
 

Shimadzu TOC-V CPH with a measuring unit TNM-1

Contact: Assoc. Prof. Ing. Vladimír Sýkora

b vladimir.sykora@vscht.cz  e 220 44 3229

 

  • Carbon analyzer
  • Differential determination of dissolved organic and inorganic carbon (DOC, IC) according to ČSN ISO 8245
  • Determination of dissolved non-removable and degradable organic carbon (NPOC, POC)
  • Determination of dissolved total nitrogen (TN)
 

Shimadzu TOC-5000A

Contact: Assoc. Prof. Ing. Vladimír Sýkora

b vladimir.sykora@vscht.cz  e 220 44 3229

 

  • Carbon analyzer
  • Differential determination of dissolved organic and inorganic carbon (DOC, IC) according to ČSN ISO 8245
  • Determination of dissolved non-recoverable organic carbon (NPOC)
  • Determination of TOC and IC in solid samples according to ČSN EN 13 137
 

LTX 2000 - LABTECH s.r.o., Czech Rep.

Contact: Dr. Jan Bindzar

b jan.bindzar@vscht.cz  e 220 44 5125

 

  • Group determination of organic halogenated substances
  • Determination of adsorbable organically bound halogens (AOX) in both solid and liquid samples
  • Determination of extractable organically bound halogens (EOX) in solid samples
  • Determination of adsorbable organic bound iodine (AOI) in both solid and liquid samples
[iduzel] => 40711 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/40706/40711 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [40710] => stdClass Object ( [nazev] => Gas analyses [seo_title] => Gas analyses [seo_desc] => [autor] => [autor_email] => [obsah] =>
 Pic. 1 (šířka 215px)

Gas chromatograph GC 8000 TOP with TCD detector

Contact: Dr. Jana Bartáčková

b jana.bartackova@vscht.cz  e 220 44 4374

 

  • Fill column for the determination of elemental gases (oxygen, nitrogen, hydrogen), carbon dioxide and methane

 

Gas chromatograph GC SHIMADZU 2010, TCD detector

Contact: Dr. Jana Bartáčková

b jana.bartackova@vscht.cz  e 220 44 4374

 

  • Column for the determination of biogas, oxygen, air, carbon dioxide and nitrous oxide
[iduzel] => 40710 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/40706/40710 [sablona] => stdClass Object ( [class] => stranka [html] => [css] => [js] => [autonomni] => 1 ) ) [46647] => stdClass Object ( [nazev] => Real-time sequencing [seo_title] => Real-time sequencing [seo_desc] => [autor] => [autor_email] => [perex] =>

third generations sequencers have been bought to our lab and will be used independently in the project of doctor Marie ....(project, grant etc.) and prof, Bartacek ... 

The technology has been used since 2015, but lately, the improvements in chemistry and data processing significantly decreased error rates it was generating. So in 2019 MinION is ready to help us investigate the WWTPs. 

 To learn more about this fascinating technology and device visit Oxford Nanopore Technologies webpage

https://nanoporetech.com/products/minion and to see how it works watch the https://www.youtube.com/watch?v=hs0FdiTHMbc&t=2s.

[ikona] => [obrazek] => 0003~~8_R1jzcyMLQ0MDIwjzewMDIxMQAA.jpg [obsah] => [urlnadstranka] => [iduzel] => 46647 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/40706/46647 [sablona] => stdClass Object ( [class] => stranka_obrazek_vertical [html] => [css] => [js] => [autonomni] => 1 ) ) ) [iduzel] => 40706 [canonical_url] => [skupina_www] => Array ( ) [url] => /research/40706 [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) ) ) [sablona] => stdClass Object ( [class] => boxy [html] => [css] => [js] => $(function() { setInterval(function () { $('*[data-countdown]').each(function() { CountDownIt('#'+$(this).attr("id")); }); },1000); setInterval(function () { $('.homebox_slider:not(.stop)').each(function () { slide($(this),true); }); },5000); }); function CountDownIt(selector) { var el=$(selector);foo = new Date; var unixtime = el.attr('data-countdown')*1-parseInt(foo.getTime() / 1000); if(unixtime<0) unixtime=0; var dnu = 1*parseInt(unixtime / (3600*24)); unixtime=unixtime-(dnu*(3600*24)); var hodin = 1*parseInt(unixtime / (3600)); unixtime=unixtime-(hodin*(3600)); var minut = 1*parseInt(unixtime / (60)); unixtime=unixtime-(minut*(60)); if(unixtime<10) {unixtime='0'+unixtime;} if(dnu<10) {unixtime='0'+dnu;} if(hodin<10) {unixtime='0'+hodin;} if(minut<10) {unixtime='0'+minut;} el.html(dnu+':'+hodin+':'+minut+':'+unixtime); } function slide(el,vlevo) { if(el.length<1) return false; var leva=el.find('.content').position().left; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; var cislo=leva/sirka*-1; if(vlevo) { if(cislo+1>pocet) cislo=0; else cislo++; } else { if(cislo==0) cislo=pocet-1; else cislo--; } el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } function slideTo(el,cislo) { if(el.length<1) return false; var sirka=el.width(); var pocet=el.find('.content .homebox').length-1; if(cislo<0 || cislo>pocet) return false; el.find('.content').animate({'left':-1*cislo*sirka}); el.find('.slider_puntiky a').removeClass('selected'); el.find('.slider_puntiky a.puntik'+cislo).addClass('selected'); return false; } [autonomni] => 1 ) [api_suffix] => )

UCT Prague
Technická 5
166 28 Prague 6 – Dejvice
IČO: 60461373 / VAT: CZ60461373

Czech Post certified digital mail code: sp4j9ch

Copyright: UCT Prague 2017
Information provided by the Department of International Relations and the Department of R&D. Technical support by the Computing Centre.
switch to desktop version